We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress
Sign In
Advertise with Us
GLOBETECH PUBLISHING LLC

Download Mobile App




New Technique that Could Significantly Simplify Hyperpolarized MRI Paves Way for Major Advances

By MedImaging International staff writers
Posted on 30 Apr 2021
Print article
Image: Hyperpolarization of fumarate for use as a biosensor (Photo courtesy of John Blanchard, James Eills)
Image: Hyperpolarization of fumarate for use as a biosensor (Photo courtesy of John Blanchard, James Eills)
Researchers have developed a new technique that could significantly simplify hyperpolarized magnetic resonance imaging (MRI), which developed around 20 years ago for observing metabolic processes in the body, and pave the way for major advances in MRI.

An interdisciplinary team of researchers led by Johannes Gutenberg University Mainz (JGU; Mainz, Germany) discovered the promising new concept that involves the hyperpolarization of the metabolic product fumarate using parahydrogen and the subsequent purification of the metabolite.

The potential applications of MRI are hindered by its low sensitivity and the technique is essentially limited to observing water molecules in the body. Researchers are therefore constantly working on different ways of improving MRI. A major breakthrough was achieved around 20 years ago when hyperpolarized magnetic resonance imaging was first developed: Because hyperpolarized molecules emit significantly stronger MRI signals, substances that are only present in low concentrations in the body can also be visualized. By hyperpolarizing biomolecules and introducing them in patients, it is possible to track metabolism in real time, thus providing doctors with much more information.

Hyperpolarized fumarate is a promising biosensor for the imaging of metabolic processes. Fumarate is a metabolite of the citric acid cycle that plays an important role in the energy production of living beings. For imaging purposes, the fumarate is tagged with carbon-13 as the atomic nuclei of this isotope can be hyperpolarized. Dynamic nuclear polarization is the current state-of-the-art method for hyperpolarizing fumarate, but this is expensive and relatively slow. The equipment required costs one to two million Euros.

Dynamic nuclear polarization is very difficult to use in everyday clinical practice due to the related high costs and technical complexity. Using parahydrogen, the research team was able to hyperpolarize this important biomolecule in a cost-effective and convenient way. However, parahydrogen-induced polarization, or PHIP for short, also has its disadvantages. The low level of polarization and the large number of unwanted accompanying substances are particularly problematic in the case of this chemistry-based technique. Among other things, transferring the polarization from parahydrogen into fumarate requires a catalyst, which remains in the reaction fluid just like other reaction side-products.

The solution to this problem is to purify the hyperpolarized fumarate through precipitation. The fumarate then takes the form of a purified solid and can be redissolved at the desired concentration later. This creates a product from which all toxic substances have been removed, making it ready to be used in the body. In addition, compared to previous experiments with PHIP, the polarization is increased to remarkable 30 to 45%. Preclinical studies have already shown that hyperpolarized fumarate imaging is a suitable method of monitoring how tumors respond to therapy as well as for imaging acute kidney injuries or the effects of myocardial infarction. This new way of producing hyperpolarized fumarate should greatly accelerate preclinical studies and bring this technology to more laboratories.

"This technique would not only be simpler, but also much cheaper than the previous procedure," said leader of the project Dr. James Eills, a member of the research team of Professor Dmitry Budker at Johannes Gutenberg University Mainz (JGU) and the Helmholtz Institute Mainz (HIM).

Related Links:
Johannes Gutenberg University Mainz

Gold Member
Solid State Kv/Dose Multi-Sensor
AGMS-DM+
New
X-Ray Detector
FDR-D-EVO III
New
Oncology Information System
RayCare
Laptop Ultrasound Scanner
PL-3018

Print article

Channels

Radiography

view channel
:	Image: The AI model could be a valuable adjunct to human radiologists in breast cancer diagnoses and risk prediction (Photo courtesy of 123RF)

AI Model Predicts 5-Year Breast Cancer Risk from Mammograms

Approximately 13% of U.S. women, or one in every eight, are predicted to develop invasive breast cancer over their lifetime, with 1 in 39 women (3%) succumbing to the illness, according to the American... Read more

Nuclear Medicine

view channel
Image: The AI system uses scintigraphy imaging for early diagnosis of cardiac amyloidosis (Photo courtesy of 123RF)

AI System Automatically and Reliably Detects Cardiac Amyloidosis Using Scintigraphy Imaging

Cardiac amyloidosis, a condition characterized by the buildup of abnormal protein deposits (amyloids) in the heart muscle, severely affects heart function and can lead to heart failure or death without... Read more

General/Advanced Imaging

view channel
Image: The Cinematic Reality app enables interaction with realistic renderings of human anatomy (Photo courtesy of Siemens)

AR Application Turns Medical Scans Into Holograms for Assistance in Surgical Planning

Siemens Healthineers (Erlangen, Germany) has launched an app designed for Apple Vision Pro that allows users including surgeons, medical students, or patients to view immersive, interactive holograms of... Read more

Imaging IT

view channel
Image: The new Medical Imaging Suite makes healthcare imaging data more accessible, interoperable and useful (Photo courtesy of Google Cloud)

New Google Cloud Medical Imaging Suite Makes Imaging Healthcare Data More Accessible

Medical imaging is a critical tool used to diagnose patients, and there are billions of medical images scanned globally each year. Imaging data accounts for about 90% of all healthcare data1 and, until... Read more

Industry News

view channel
Image: Samsung Medison CEO Mr. Yongkwan Kim and Bracco Imaging CEO Dr. Fulvio Renoldi Bracco endorsed a MoU agreement (Photo courtesy of Bracco Group)

Samsung and Bracco Enter Into New Diagnostic Ultrasound Technology Agreement

Samsung Medison (Seoul, South Korea) and Bracco Imaging (Milan, Italy) have entered into a Memorandum of Understanding (MoU) agreement to pioneer a new area for diagnostic ultrasound devices and contrast agents.... Read more
Copyright © 2000-2024 Globetech Media. All rights reserved.