We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress
Sign In
Advertise with Us
GLOBETECH PUBLISHING LLC

Download Mobile App




CT Radiomics Helps Classify Small Lung Nodules

By MedImaging International staff writers
Posted on 01 Feb 2021
Print article
Image:  CT radiomics can help classify lung nodule malignancy (Photo courtesy of Getty Images)
Image: CT radiomics can help classify lung nodule malignancy (Photo courtesy of Getty Images)
A machine-learning (ML) algorithm can be highly accurate for classifying very small lung nodules found in low-dose CT lung screening programs, according to a new study.

Researchers at the BC Cancer Research Center (BCCRC; Vancouver, Canada) trained a linear discriminant analysis (LDA) ML algorithm--using data from the Pan-Canadian Early Detection of Lung Cancer (PanCan) study--to characterize, analyze, and classify small lung nodules as malignant or benign by extracting approximately 170 texture and shape radiomic features, following semi-automated nodule segmentation on the images. They then compared the performance of the algorithm with that of the Prostate, Lung, Colorectal, and Ovarian (PLCO) m2012 malignancy risk score calculator on another dataset.

The study cohort consisted of 139 malignant nodules and 472 benign nodules that were approximately matched in size. The researchers applied size restrictions (based on Lung-RADS classification criteria) to remove any nodules from the dataset that would already be considered suspicious, which would include any nodule with solid components greater than 8 mm in diameter. The results showed the ML algorithm significantly outperformed the (PLCO) m2012 risk-prediction model, especially when demographic data were added to radiomics analysis. The study was presented at the AACR Virtual Special Conference on Artificial Intelligence, Diagnosis, and Imaging, held during January 2021.

“The best results were achieved in a subset of patients who were younger than 64, female, did not have emphysema, smoked fewer than 42 pack years, did not have a family history of lung cancer, and were not current smokers,” said senior author and study presenter Rohan Abraham, PhD. “Combined with clinician expertise and experience, this has the potential to enable earlier intervention and reduce the need for follow-up CT.”

Current lung nodule classification relies on nodule size, a factor that is of limited use for sub-centimeter nodules, or on volume doubling time, a variable that requires follow-up CT exams. As a result, very small lung nodules, with solid components of less than 8 mm in diameter (and therefore below the Lung-RADS 4A risk-stratification threshold), are very difficult to classify, and they are often given a "wait and see" management plan.

Related Links:
BC Cancer Research Center

Gold Member
Solid State Kv/Dose Multi-Sensor
AGMS-DM+
Computed Tomography (CT) Scanner
Aquilion Serve SP
New
Breast Imaging Workstation
SecurView
New
Pre-Op Planning Solution
Sectra 3D Trauma

Print article
Radcal

Channels

MRI

view channel
Image: PET/MRI can accurately classify prostate cancer patients (Photo courtesy of 123RF)

PET/MRI Improves Diagnostic Accuracy for Prostate Cancer Patients

The Prostate Imaging Reporting and Data System (PI-RADS) is a five-point scale to assess potential prostate cancer in MR images. PI-RADS category 3 which offers an unclear suggestion of clinically significant... Read more

Nuclear Medicine

view channel
Image: The new SPECT/CT technique demonstrated impressive biomarker identification (Journal of Nuclear Medicine: doi.org/10.2967/jnumed.123.267189)

New SPECT/CT Technique Could Change Imaging Practices and Increase Patient Access

The development of lead-212 (212Pb)-PSMA–based targeted alpha therapy (TAT) is garnering significant interest in treating patients with metastatic castration-resistant prostate cancer. The imaging of 212Pb,... Read more

General/Advanced Imaging

view channel
Image: The Tyche machine-learning model could help capture crucial information. (Photo courtesy of 123RF)

New AI Method Captures Uncertainty in Medical Images

In the field of biomedicine, segmentation is the process of annotating pixels from an important structure in medical images, such as organs or cells. Artificial Intelligence (AI) models are utilized to... Read more

Imaging IT

view channel
Image: The new Medical Imaging Suite makes healthcare imaging data more accessible, interoperable and useful (Photo courtesy of Google Cloud)

New Google Cloud Medical Imaging Suite Makes Imaging Healthcare Data More Accessible

Medical imaging is a critical tool used to diagnose patients, and there are billions of medical images scanned globally each year. Imaging data accounts for about 90% of all healthcare data1 and, until... Read more
Copyright © 2000-2024 Globetech Media. All rights reserved.