We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress
Sign In
Advertise with Us
GLOBETECH PUBLISHING LLC

Download Mobile App




Miniature Dosimeters Autonomously Monitor EMR Exposure

By MedImaging International staff writers
Posted on 16 Jan 2020
Print article
Image: A prototype autonomous EMR dosimeter (Photo courtesy of NU)
Image: A prototype autonomous EMR dosimeter (Photo courtesy of NU)
A millimeter-scale, ultra-low-power wireless digital platform provides continuous electromagnetic radiation (EMR) dosimetry for time-managed, wireless consumer devices.

Developed at Northwestern University (NU; Evanston, IL, USA) and the Korea Advanced Institute of Science and Technology (KAIST; Daejeon, Republic of Korea), the miniaturized digital dosimeter provides continuous EMR monitoring in an autonomous mode at one or multiple wavelengths simultaneously, transmitting the data over long-range wireless protocols to standard consumer devices. A single button cell battery powers the unit over a multiyear life span, enabled by the combined use of a light-powered, accumulation mode of detection and a light-adaptive, ultralow-power circuit design.

The dosimeter includes an accumulation detection module (ADM) for dosimetry and a Bluetooth low energy (BLE) system on a chip for wireless communication. A key feature is that the built-in ADM can directly measure continuous dose exposure without power consumption. As a result, it remains in an ultra-low sleep mode in the absence of light while continuously monitoring dosage via the ADM. When the dose exceeded a threshold, the device briefly wakes up to wirelessly transmit exposure data using BLE protocols to a smartphone, and resets the ADM and quickly return to sleep mode.

The ADM also includes a photodiode, supercapacitor, and a metal oxide semiconductor field-effect transistor (MOSFET). The miniaturized forms of the device have already been tested on sunglass clips, earrings, and wristbands for personalized EMR exposure detection. Field studies have shown that the dosimeter is extremely efficient in monitoring short-wavelength blue light from indoor lighting and display systems, as well as ultraviolet (UV), visible, and infrared (IR) radiation from the sun. The study was published on December 13, 2109, in Science Advances.

“The key feature of the ADM is that it directly measures exposure dose in a continuous fashion, without any power consumption. By contrast, conventional digital approaches approximate dose through computational time integration across a series of brief measurements of intensity, each performed using active, battery-powered electronics,” concluded lead author Kyeongha Kwon, PhD, of NU and KAIST, and colleagues. “Lack of interface ports and mechanical switches and the absence of need for battery replacement allow hermetic sealing of device for waterproof, sweat-resistant, and wear-resistant capabilities.”

Overexposure or underexposure to EMR can accumulate with latent consequences; where excessive exposure to UV and blue light from the sun or emissions of tanning beds and cellphones, can have associated health risks. For instance, repetitive keratinocyte damage from chronic exposure to UV is fundamental to cause skin cancer. The shorter wavelengths of the visible spectrum can generate reactive oxygen species (ROS) in the skin to cause DNA damage, hyperpigmentation and inflammation, alongside collagen and elastin degradation. Blue light can cause photochemical damage in retinal tissue to accelerate age-related maculopathy and modulate retinal control of the human circadian rhythm to suppress melatonin secretion.

Related Links:
Northwestern University
Korea Advanced Institute of Science and Technology


Gold Member
Solid State Kv/Dose Multi-Sensor
AGMS-DM+
New
Ultrasound Needle Guide
Ultra-Pro II
New
Ultrasound Software
UltraExtend NX
Laptop Ultrasound Scanner
PL-3018

Print article

Channels

Nuclear Medicine

view channel
Image: The AI system uses scintigraphy imaging for early diagnosis of cardiac amyloidosis (Photo courtesy of 123RF)

AI System Automatically and Reliably Detects Cardiac Amyloidosis Using Scintigraphy Imaging

Cardiac amyloidosis, a condition characterized by the buildup of abnormal protein deposits (amyloids) in the heart muscle, severely affects heart function and can lead to heart failure or death without... Read more

General/Advanced Imaging

view channel
Image: The Cinematic Reality app enables interaction with realistic renderings of human anatomy (Photo courtesy of Siemens)

AR Application Turns Medical Scans Into Holograms for Assistance in Surgical Planning

Siemens Healthineers (Erlangen, Germany) has launched an app designed for Apple Vision Pro that allows users including surgeons, medical students, or patients to view immersive, interactive holograms of... Read more

Imaging IT

view channel
Image: The new Medical Imaging Suite makes healthcare imaging data more accessible, interoperable and useful (Photo courtesy of Google Cloud)

New Google Cloud Medical Imaging Suite Makes Imaging Healthcare Data More Accessible

Medical imaging is a critical tool used to diagnose patients, and there are billions of medical images scanned globally each year. Imaging data accounts for about 90% of all healthcare data1 and, until... Read more

Industry News

view channel
Image: Samsung Medison CEO Mr. Yongkwan Kim and Bracco Imaging CEO Dr. Fulvio Renoldi Bracco endorsed a MoU agreement (Photo courtesy of Bracco Group)

Samsung and Bracco Enter Into New Diagnostic Ultrasound Technology Agreement

Samsung Medison (Seoul, South Korea) and Bracco Imaging (Milan, Italy) have entered into a Memorandum of Understanding (MoU) agreement to pioneer a new area for diagnostic ultrasound devices and contrast agents.... Read more
Copyright © 2000-2024 Globetech Media. All rights reserved.