We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress
Sign In
Advertise with Us
GLOBETECH PUBLISHING LLC

Download Mobile App




Gyroscopic Radiosurgery Platform Ablates Brain Tumors

By MedImaging International staff writers
Posted on 11 Feb 2019
Print article
Image: The ZAP-X gyroscopic radiosurgery platform (Photo courtesy of ZAP Surgical Systems).
Image: The ZAP-X gyroscopic radiosurgery platform (Photo courtesy of ZAP Surgical Systems).
A novel radiotherapy (RT) platform delivers high-dose stereotactic radiosurgery (SRS) to non-invasively ablate brain tumors and other select intracranial conditions.

The ZAP Surgical Systems (San Carlos, CA, USA) ZAP-X Gyroscopic Radiosurgery system is a self-contained, self-shielded therapeutic RT device dedicated to the treatment of benign and malignant intracranial and cervical spine lesions, in some cases as inferior as C7. ZAP-X is powered by a 2.7 megavolt S-band linear accelerator (LINAC) which serves as the source of the therapeutic radiation, mounted within a combination of yoked gimbals, each of which accurately rotates around the common isocenter, much like a large gyroscope.

Accurate beam positioning is accomplished by the LINAC beam crossfiring from 2π steradians of solid angle, and precise movements of the robotic patient table. Most components needed to produce the beam, such as the radiofrequency power source, waveguide system, and beam triggering electronics, as well as significant radiation shielding, are mounted on or integrated into the rotating patient treatment chamber sphere. The patient is supported on the moveable treatment table, which extends outside the treatment sphere, but which itself is also enclosed by additional radiation shielding during SRS.

The Zap-X accomplishes precise three-dimensional (3D) patient registration by means of an integrated planar kilovolt (kV) imaging system that also rotates around the patient’s head. Pairs of non-coaxial x-ray images and image-to-image correlations are used to determine the location of the patient’s anatomy in relation to the machine isocenter, both prior to and during SRS treatment. A fully integrated dosimetry validation system monitors and verifies delivered RT dosage in real-time. Finally, ZAP-X incorporates a unique self-shielded design that typically eliminates the need for costly radiation vaults.

“After almost a decade of effort, we're incredibly proud of what the ZAP-X can mean to cancer patients,” said professor of neurosurgery John Adler, MD, CEO of ZAP Surgical Systems. “Using leading-edge technology, we've removed many historical limitations to the wider availability of SRS, and in doing so, seek to establish a new standard in precision radiation medicine.”

SRS is a non-surgical radiation therapy used to treat functional abnormalities and small tumors of the brain. When SRS is used to treat body tumors, it is called stereotactic body radiotherapy (SBRT). Both SRS and SBRT are an image-guided radiation therapy (IGRT), relying on 3D imaging and localization techniques, immobilization systems for precise patient position during therapy, and highly focused gamma ray or x-ray beams that converge on the tumor.

Related Links:
ZAP Surgical Systems

Gold Member
Solid State Kv/Dose Multi-Sensor
AGMS-DM+
New
X-Ray Detector
FDR-D-EVO III
Dose Area Product Meter
VacuDAP
New
Ultrasound System
Acclarix AX9

Print article

Channels

Radiography

view channel
:	Image: The AI model could be a valuable adjunct to human radiologists in breast cancer diagnoses and risk prediction (Photo courtesy of 123RF)

AI Model Predicts 5-Year Breast Cancer Risk from Mammograms

Approximately 13% of U.S. women, or one in every eight, are predicted to develop invasive breast cancer over their lifetime, with 1 in 39 women (3%) succumbing to the illness, according to the American... Read more

General/Advanced Imaging

view channel
Image: The Cinematic Reality app enables interaction with realistic renderings of human anatomy (Photo courtesy of Siemens)

AR Application Turns Medical Scans Into Holograms for Assistance in Surgical Planning

Siemens Healthineers (Erlangen, Germany) has launched an app designed for Apple Vision Pro that allows users including surgeons, medical students, or patients to view immersive, interactive holograms of... Read more

Imaging IT

view channel
Image: The new Medical Imaging Suite makes healthcare imaging data more accessible, interoperable and useful (Photo courtesy of Google Cloud)

New Google Cloud Medical Imaging Suite Makes Imaging Healthcare Data More Accessible

Medical imaging is a critical tool used to diagnose patients, and there are billions of medical images scanned globally each year. Imaging data accounts for about 90% of all healthcare data1 and, until... Read more

Industry News

view channel
Image: Samsung Medison CEO Mr. Yongkwan Kim and Bracco Imaging CEO Dr. Fulvio Renoldi Bracco endorsed a MoU agreement (Photo courtesy of Bracco Group)

Samsung and Bracco Enter Into New Diagnostic Ultrasound Technology Agreement

Samsung Medison (Seoul, South Korea) and Bracco Imaging (Milan, Italy) have entered into a Memorandum of Understanding (MoU) agreement to pioneer a new area for diagnostic ultrasound devices and contrast agents.... Read more
Copyright © 2000-2024 Globetech Media. All rights reserved.