We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress
Sign In
Advertise with Us
GLOBETECH PUBLISHING LLC

Download Mobile App




Optical Imaging System Brings Molecular Diagnostics to the OR

By MedImaging International staff writers
Posted on 03 Jan 2019
Print article
Image: Label-free imaging of the tumor microenvironment can provides real-time visualization of structural and molecular features, including EVs (Photo courtesy of UIUC).
Image: Label-free imaging of the tumor microenvironment can provides real-time visualization of structural and molecular features, including EVs (Photo courtesy of UIUC).
A novel portable optical imaging system can successfully visualize the tumor microenvironment of excised human breast tissue, according to a new study.

Developed at the University of Illinois at Urbana-Champaign (UIUC; USA) and Carle Foundation Hospital (Urbana, IL, USA), the nonlinear imaging system uses precise light pulses to simultaneously image tissue in four modalities, showing concurrent molecular processes within cells and tissue in the tumor microenvironment. For example, collagen fibers appear in green; elastin fibers and Flavin-based cell cytoplasm appear in yellow; cell membranes, lipid boundaries, and extracellular vesicles (EVs) appear in magenta; and nicotinamide adenine dinucleotide in the cells and lipids appears in cyan.

To demonstrate the viability of the imaging system in the OR, the researchers intraoperatively imaged untreated human breast tissues from 29 patients with breast cancer using label-free optical contrasts, correlated with histological findings, which enabled point-of-procedure characterization of the tumor microenvironment within 30 minutes of diseased tissue extraction. EV densities were found to increase with higher histologic grade and shorter tumor-to-margin distance, and were significantly higher than those from seven cancer-free patients undergoing breast reduction surgery. The study was published on December 19, 2018, in Science Advances.

“EVs do play an essential role in cancer progression. Quantifying EV densities may be developed as a potential biomarker for future cancer diagnoses,” said lead author graduate student Yi Sun, MSc. “What we observed about the extracellular vesicles is significant, but it could only be accurately determined with our new system. Our imaging technique works well with current cancer treatment routines and is free of any form of perturbation.”

“We believe that capturing the dynamic cellular and molecular features in freshly removed or biopsied tissue specimens contains valuable diagnostic and prognostic information that is currently lost when specimens are placed in a fixative and essentially killed quickly in order to preserve structure,” said senior author Professor Stephen Boppart, PhD, of the UIUC Beckman Institute for Advanced Science and Technology. “Our imaging platform and methodology allow us to extract this new information in real-time, at the point-of-procedure.”

Tumor-associated EVs play important roles in intercellular communication, both inside and outside of the tumor microenvironment, promoting tumor progression by directing cancer-associated events and changes. Various EV detection methods have been proposed and investigated, such as flow cytometry performed on circulating exosomes, immuno-based detection, and fluorescence label-based approaches for visualization, but none are label-free. Few attempts have been made to study human EVs using label-free imaging of fresh untreated or unstained human tumor tissues.

Related Links:
University of Illinois at Urbana-Champaign
Carle Foundation Hospital

Gold Member
Solid State Kv/Dose Multi-Sensor
AGMS-DM+
Laptop Ultrasound Scanner
PL-3018
New
Ultrasound Needle Guide
Ultra-Pro II
New
Ultrasound System
Acclarix AX9

Print article

Channels

Radiography

view channel
:	Image: The AI model could be a valuable adjunct to human radiologists in breast cancer diagnoses and risk prediction (Photo courtesy of 123RF)

AI Model Predicts 5-Year Breast Cancer Risk from Mammograms

Approximately 13% of U.S. women, or one in every eight, are predicted to develop invasive breast cancer over their lifetime, with 1 in 39 women (3%) succumbing to the illness, according to the American... Read more

Nuclear Medicine

view channel
Image: The AI system uses scintigraphy imaging for early diagnosis of cardiac amyloidosis (Photo courtesy of 123RF)

AI System Automatically and Reliably Detects Cardiac Amyloidosis Using Scintigraphy Imaging

Cardiac amyloidosis, a condition characterized by the buildup of abnormal protein deposits (amyloids) in the heart muscle, severely affects heart function and can lead to heart failure or death without... Read more

Imaging IT

view channel
Image: The new Medical Imaging Suite makes healthcare imaging data more accessible, interoperable and useful (Photo courtesy of Google Cloud)

New Google Cloud Medical Imaging Suite Makes Imaging Healthcare Data More Accessible

Medical imaging is a critical tool used to diagnose patients, and there are billions of medical images scanned globally each year. Imaging data accounts for about 90% of all healthcare data1 and, until... Read more

Industry News

view channel
Image: Samsung Medison CEO Mr. Yongkwan Kim and Bracco Imaging CEO Dr. Fulvio Renoldi Bracco endorsed a MoU agreement (Photo courtesy of Bracco Group)

Samsung and Bracco Enter Into New Diagnostic Ultrasound Technology Agreement

Samsung Medison (Seoul, South Korea) and Bracco Imaging (Milan, Italy) have entered into a Memorandum of Understanding (MoU) agreement to pioneer a new area for diagnostic ultrasound devices and contrast agents.... Read more
Copyright © 2000-2024 Globetech Media. All rights reserved.