We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress
Sign In
Advertise with Us
GLOBETECH PUBLISHING LLC

Download Mobile App




PET Pancreas Imaging Could Guide Diabetes Treatment

By MedImaging International staff writers
Posted on 16 Aug 2018
Print article
A new positron emission tomography (PET) imaging method could measure pancreatic β-cell mass, enhancing type 1 diabetes mellitus (T1DM) monitoring.

Researchers at Yale University (New Haven, CT, USA) and Yale University School of Medicine (New Haven, CT, USA) examined a β-cell gene atlas for endocrine pancreas receptor targets. As β-cells and neurologic tissues have common cellular receptors and transporters, the researchers set out to screen available brain radioligands for their ability to identify β-cells. Twelve healthy control subjects and two T1DM subjects then underwent dynamic PET scans with six tracers.

The results provide preliminary evidence that carbon-11-(+)-4-propyl-9-hydroxynaphthoxazine, more commonly known as 11C-PHNO, could serve as a potential marker of beta-cell mass, with 2:1 binding of D3 receptors over D2 receptors, and could help differentiate the beta-cell mass of healthy individuals from those with T1DM, as well as track and guide potential therapies for diabetes patients. The study was published in the August 2018 issue of The Journal of Nuclear Medicine.

“Beta-cell mass includes both functional and non-functional β-cells. Many indirect methods to measure β-cell function are influenced by factors such as glucose and insulin levels, and are not able to measure non-functional beta cells that may be responsive to treatments,” said lead author Jason Bini, PhD, of the Yale University PET Center. “If a patient has low beta-cell function with high signal in the PET scan, this could represent a patient with dormant beta cells that could respond to a treatment targeting existing cells.”

T1DM, also known as insulin dependent diabetes, is characterized by a loss of β-cells in the islets of Langerhans of the pancreas. The primary function of a β-cell is to store and release insulin in response to spikes in blood glucose concentrations; the cells secrete stored insulin, while simultaneously producing more. T1DM is believed to be caused by an autoimmune response where the body destroys 70-80% of β-cells, leaving only 20–30% of them functioning. This can cause hyperglycemia, which leads to other adverse short-term and long-term conditions.

Related Links:
Yale University
Yale University School of Medicine

Gold Member
Solid State Kv/Dose Multi-Sensor
AGMS-DM+
Compact C-Arm with FPD
Arcovis DRF-C R21
New
Breast Imaging Workstation
SecurView
New
Ultrasound Table
Powered Ultrasound Table-Flat Top

Print article
Radcal

Channels

MRI

view channel
Image: PET/MRI can accurately classify prostate cancer patients (Photo courtesy of 123RF)

PET/MRI Improves Diagnostic Accuracy for Prostate Cancer Patients

The Prostate Imaging Reporting and Data System (PI-RADS) is a five-point scale to assess potential prostate cancer in MR images. PI-RADS category 3 which offers an unclear suggestion of clinically significant... Read more

Nuclear Medicine

view channel
Image: The new SPECT/CT technique demonstrated impressive biomarker identification (Journal of Nuclear Medicine: doi.org/10.2967/jnumed.123.267189)

New SPECT/CT Technique Could Change Imaging Practices and Increase Patient Access

The development of lead-212 (212Pb)-PSMA–based targeted alpha therapy (TAT) is garnering significant interest in treating patients with metastatic castration-resistant prostate cancer. The imaging of 212Pb,... Read more

Imaging IT

view channel
Image: The new Medical Imaging Suite makes healthcare imaging data more accessible, interoperable and useful (Photo courtesy of Google Cloud)

New Google Cloud Medical Imaging Suite Makes Imaging Healthcare Data More Accessible

Medical imaging is a critical tool used to diagnose patients, and there are billions of medical images scanned globally each year. Imaging data accounts for about 90% of all healthcare data1 and, until... Read more
Copyright © 2000-2024 Globetech Media. All rights reserved.