We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress
Sign In
Advertise with Us
GLOBETECH PUBLISHING LLC

Download Mobile App




Imaging Software Rapidly Identifies Dendritic Spines

By MedImaging International staff writers
Posted on 17 Jul 2018
Print article
Image: Surface smoothing of a binary image of the dendritic spine (Photo courtesy of Max Planck Florida Institute).
Image: Surface smoothing of a binary image of the dendritic spine (Photo courtesy of Max Planck Florida Institute).
A novel 2-photon microscopy algorithm autonomously and efficiently identifies small dendritic spines with over 90% accuracy, according to a new study.

Developed by researchers at the Max Planck Florida Institute for Neuroscience (Jupiter, FL; USA), the software is built on a machine learning approach that uses custom thresholding and binarization functions to clean up fluorescent images, and a neural network trained to differentiate between the dendrite backbone and dendritic spines using the relative shape of the spine perimeter and its corresponding dendritic backbone. Once the training period finishes, the software can automatically scan through an image and demarcate spines it comes across with high precision.

By automating the process of spine identification, the high-throughput imaging system has the potential to dramatically increase workflow efficiency by stimulating and monitoring hundreds of dendritic spines under various conditions at the same time, shaving hours off analysis time. In addition, the source code is provided free of charge bundled together with a user-friendly, open-source, MATLAB-based software package for spine analysis. The study was published on July 5, 2018, in PLOS One.

“When engineers and scientists design cutting-edge microscopes, they usually focus on the actual physical components and design. They are mostly interested in what these imaging technologies can do, what boundaries they can break and how they perform,” said lead author Michael Smirnov, PhD. “Far less attention is placed on how these complex technologies can be made accessible for the average user and really improve their workflow. Each time I write my software, I always think about the user first; how can I make a difference for the person using it, make their research a little easier.”

Synaptic plasticity, the cellular basis for learning and memory, is mediated by a complex biochemical network of signaling proteins. These proteins are compartmentalized in dendritic spines, the tiny, bulbous, post-synaptic structures found on neuronal dendrites.

Related Links:
Max Planck Florida Institute for Neuroscience

Gold Member
Solid State Kv/Dose Multi-Sensor
AGMS-DM+
New
Ultrasound System
P20 Elite
DR Flat Panel Detector
1500L
Silver Member
Mobile X-Ray Barrier
Lead Acrylic Mobile X-Ray Barriers

Print article
Radcal

Channels

MRI

view channel
Image: Exablate Prime features an enhanced user interface and enhancements to optimize productivity (Photo courtesy of Insightec)

Next Generation MR-Guided Focused Ultrasound Ushers In Future of Incisionless Neurosurgery

Essential tremor, often called familial, idiopathic, or benign tremor, leads to uncontrollable shaking that significantly affects a person’s life. When traditional medications do not alleviate symptoms,... Read more

Nuclear Medicine

view channel
Image: The new SPECT/CT technique demonstrated impressive biomarker identification (Journal of Nuclear Medicine: doi.org/10.2967/jnumed.123.267189)

New SPECT/CT Technique Could Change Imaging Practices and Increase Patient Access

The development of lead-212 (212Pb)-PSMA–based targeted alpha therapy (TAT) is garnering significant interest in treating patients with metastatic castration-resistant prostate cancer. The imaging of 212Pb,... Read more

Imaging IT

view channel
Image: The new Medical Imaging Suite makes healthcare imaging data more accessible, interoperable and useful (Photo courtesy of Google Cloud)

New Google Cloud Medical Imaging Suite Makes Imaging Healthcare Data More Accessible

Medical imaging is a critical tool used to diagnose patients, and there are billions of medical images scanned globally each year. Imaging data accounts for about 90% of all healthcare data1 and, until... Read more
Copyright © 2000-2024 Globetech Media. All rights reserved.