We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress
Sign In
Advertise with Us
GLOBETECH PUBLISHING LLC

Download Mobile App




Wearable MRI Detector Captures Anatomical Motion

By MedImaging International staff writers
Posted on 23 May 2018
Print article
Image: The wearable MRI glove is designed to image moving joints and aid in diagnosing repetitive strain injuries (Photo courtesy of NYU Langone).
Image: The wearable MRI glove is designed to image moving joints and aid in diagnosing repetitive strain injuries (Photo courtesy of NYU Langone).
A new study describes how a magnetic resonance imaging (MRI) element woven into a glove-like detector could aid the diagnosis of repetitive strain injuries such as carpal tunnel syndrome.

Researchers at NYU Langone Medical Center (New York, NY, USA) and New York University (NYU, USA) have designed a wearable detector array for MRI of the hand that is based on high-impedance coils that can cloak themselves from electrodynamic interactions. The MRI signal is produced by hydrogen protons; since no electric current is created by the MRI signal, the new receiver coils no longer create magnetic fields that interfere with neighboring receivers, thus removing the need for rigid structures. The coils do not suffer from signal-to-noise (SNR) degradation mechanisms typically observed with the use of traditional low-impedance elements.

While MRI can efficiently image muscles, nerves, and even cartilage, which are difficult to study using other non-invasive methods, tendons and ligaments, which are made of dense proteins instead of fluid, remain difficult to see independently, because both appear as black bands running alongside bone. But with the new coils stitched into a cotton glove, they could generate images of freely moving muscles, tendons, and ligaments. The new coils revealed how the black bands moved in concert with the bones, which could help to catalogue differences that come with injury. The study was published on May 4, 2018, in Nature Biomedical Engineering.

“We wanted to try our new elements in an application that could never be done with traditional coils, and settled on an attempt to capture images with a glove,” said senior author Martijn Cloos, PhD, of the department of radiology at NYU Langone Health. “We hope that this result ushers in a new era of MRI design, perhaps including flexible sleeve arrays around injured knees, or comfy beanies to study the developing brains of newborns.”

The densely packed resonant structures used for MRI, such as nuclear magnetic resonance phased array detectors, suffer from resonant inductive coupling, which restricts the coil design to fixed geometries, in which receiver coils are painstakingly arranged to cancel out magnetic fields in neighboring coils. Once the best arrangement is set, the coils can no longer move relative to one another, constraining the ability of MRI to image complex, moving joints. But by using high-impedance detectors, the receiver coils no longer create magnetic fields that interfere with neighboring receivers, thus removing the need for rigid structures.

Related Links:
NYU Langone Medical Center
New York University

Gold Member
Solid State Kv/Dose Multi-Sensor
AGMS-DM+
Laptop Ultrasound Scanner
PL-3018
New
Ultrasound Doppler System
Doppler BT-200
Compact C-Arm with FPD
Arcovis DRF-C R21

Print article

Channels

Radiography

view channel
:	Image: The AI model could be a valuable adjunct to human radiologists in breast cancer diagnoses and risk prediction (Photo courtesy of 123RF)

AI Model Predicts 5-Year Breast Cancer Risk from Mammograms

Approximately 13% of U.S. women, or one in every eight, are predicted to develop invasive breast cancer over their lifetime, with 1 in 39 women (3%) succumbing to the illness, according to the American... Read more

Nuclear Medicine

view channel
Image: The AI system uses scintigraphy imaging for early diagnosis of cardiac amyloidosis (Photo courtesy of 123RF)

AI System Automatically and Reliably Detects Cardiac Amyloidosis Using Scintigraphy Imaging

Cardiac amyloidosis, a condition characterized by the buildup of abnormal protein deposits (amyloids) in the heart muscle, severely affects heart function and can lead to heart failure or death without... Read more

General/Advanced Imaging

view channel
Image: The CIARTIC Move self-driving mobile C-arm has received FDA clearance (Photo courtesy of Siemens)

Self-Driving Mobile C-Arm Reduces Imaging Time during Surgery

Intraoperative imaging faces significant challenges due to staff shortages and the high demands placed on surgical teams in the operating room (OR). A common challenge during many OR procedures is the... Read more

Imaging IT

view channel
Image: The new Medical Imaging Suite makes healthcare imaging data more accessible, interoperable and useful (Photo courtesy of Google Cloud)

New Google Cloud Medical Imaging Suite Makes Imaging Healthcare Data More Accessible

Medical imaging is a critical tool used to diagnose patients, and there are billions of medical images scanned globally each year. Imaging data accounts for about 90% of all healthcare data1 and, until... Read more

Industry News

view channel
Image: Samsung Medison CEO Mr. Yongkwan Kim and Bracco Imaging CEO Dr. Fulvio Renoldi Bracco endorsed a MoU agreement (Photo courtesy of Bracco Group)

Samsung and Bracco Enter Into New Diagnostic Ultrasound Technology Agreement

Samsung Medison (Seoul, South Korea) and Bracco Imaging (Milan, Italy) have entered into a Memorandum of Understanding (MoU) agreement to pioneer a new area for diagnostic ultrasound devices and contrast agents.... Read more
Copyright © 2000-2024 Globetech Media. All rights reserved.