We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress
Sign In
Advertise with Us
GLOBETECH PUBLISHING LLC

Download Mobile App




Radiation-Free Alternative to Mammogram on the Horizon

By Daniel Beris
Posted on 25 Nov 2016
Print article
Image: Microbubbles could someday help detect breast cancer (Photo courtesy of TUE).
Image: Microbubbles could someday help detect breast cancer (Photo courtesy of TUE).
A new, accurate, ultrasonic mammography method could help identify cancerous tumors by blood vessels structure, without radiation, according to a new study.

Under development at the Eindhoven University of Technology (TUE; The Netherlands), dynamic contrast specific ultrasound tomography (DCS-UST) builds on a patient-friendly prostate cancer detection method called cumulative phase delay imaging (CPDI) which images and quantifies ultrasound contrast agent (UCA) kinetics. The technology is based on harmless microbubbles injected into the patient’s bloodstream; the microbubbles vibrate in the blood at the same frequency as the ultrasonic echo, as well as at twice that frequency - the so-called second harmonic.

This second harmonic is delayed by the gas bubbles; the more bubbles are encountered by the sound on its route, the bigger the delay compared to the original sound. By measuring this delay, the researchers can thus localize the air bubbles without any disturbance, since the second harmonic generated by the body tissue is not delayed, and is therefore discernible. This difference, however, can only be seen if the sound is captured on the other side. So the method is perfectly suited to organs that can be approached from two sides, like the breast.

An ultrasound scanner can thus be used to precisely track the microbubbles as they flow through the blood vessels. Since cancer growth is associated with the formation of chaotic microvessels, the presence and location of cancer become visible. What also makes the technique different to current mammography is the patient’s position. Instead of standing, the patient lies on a table, with the breast hanging freely in a bowl. The proof-of-concept study was published in the November 2016 issue of Scientific Reports.

“For breast imaging, DCS-UST will lead to a more practical, faster, and less operator-dependent imaging procedure compared to standard echo-contrast, while preserving accurate imaging of contrast kinetics,” concluded lead author Libertario Demi, PhD, of the TUE biomedical diagnostics laboratory. “DCS-UST can find clinical applications as a diagnostic method for breast cancer localization, adding important features to multi-parametric ultrasound tomography of the breast.”

Related Links:
Eindhoven University of Technology

Gold Member
Solid State Kv/Dose Multi-Sensor
AGMS-DM+
New
Pre-Op Planning Solution
Sectra 3D Trauma
New
Brachytherapy Planning System
Oncentra Brachy
Thyroid Shield
Standard Thyroid Shield

Print article
Radcal

Channels

MRI

view channel
Image: PET/MRI can accurately classify prostate cancer patients (Photo courtesy of 123RF)

PET/MRI Improves Diagnostic Accuracy for Prostate Cancer Patients

The Prostate Imaging Reporting and Data System (PI-RADS) is a five-point scale to assess potential prostate cancer in MR images. PI-RADS category 3 which offers an unclear suggestion of clinically significant... Read more

Nuclear Medicine

view channel
Image: The new SPECT/CT technique demonstrated impressive biomarker identification (Journal of Nuclear Medicine: doi.org/10.2967/jnumed.123.267189)

New SPECT/CT Technique Could Change Imaging Practices and Increase Patient Access

The development of lead-212 (212Pb)-PSMA–based targeted alpha therapy (TAT) is garnering significant interest in treating patients with metastatic castration-resistant prostate cancer. The imaging of 212Pb,... Read more

General/Advanced Imaging

view channel
Image: The Tyche machine-learning model could help capture crucial information. (Photo courtesy of 123RF)

New AI Method Captures Uncertainty in Medical Images

In the field of biomedicine, segmentation is the process of annotating pixels from an important structure in medical images, such as organs or cells. Artificial Intelligence (AI) models are utilized to... Read more

Imaging IT

view channel
Image: The new Medical Imaging Suite makes healthcare imaging data more accessible, interoperable and useful (Photo courtesy of Google Cloud)

New Google Cloud Medical Imaging Suite Makes Imaging Healthcare Data More Accessible

Medical imaging is a critical tool used to diagnose patients, and there are billions of medical images scanned globally each year. Imaging data accounts for about 90% of all healthcare data1 and, until... Read more
Copyright © 2000-2024 Globetech Media. All rights reserved.