We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress
Sign In
Advertise with Us
GLOBETECH PUBLISHING LLC

Siemens Healthineers

Provides customized electronic systems and advanced imaging, diagnostics, therapy, and healthcare IT solutions for th... read more Featured Products: More products

Download Mobile App




MRI T1 Mapping Technique Diagnoses Genetic Disorder That Attacks the Heart, Brain, and Nerves

By MedImaging International staff writers
Posted on 16 Oct 2013
Print article
A genetic disorder that attacks multiple organs and typically causes fatal heart complications can be detected using a new magnetic resonance imaging (MRI) technique. This new diagnostic application has resulted in updated clinical guidelines for the diagnosis and treatment of Fabry disease in Canada.

The University of Alberta’s (Edmonton, AB, Canada) Faculty of Medicine & Dentistry researchers Drs. Gavin Oudit and Richard Thompson worked with Faculty colleagues Drs. Kelvin Chow and Alicia Chan on the discovery, as well as Dr. Aneal Khan from the University of Calgary (Alberta, Canada). The findings were published online before August 6, 2013, in the journal, Circulation-Cardiovascular Imaging, and involved 31 Alberta patients who have the disease.

Dr. Thompson and trainee Dr. Chow developed the MRI technique known as T1 mapping, which can identify heart damage and changes at early stages, earlier than regular MRI scans or ultrasound. When this type of MRI technology is used on patients with Fabry disease, the scans can detect both the disease and the degree of damage to the heart. The T1 mapping technology developed by the group can be easily programmed onto MRI scans worldwide.

“This test can uniquely identify Fabry disease by detecting microscopic changes in the heart muscle structure that are not visible on regular images,” said Dr. Thompson, who works in the department of biomedical engineering. “Fabry disease can look like other diseases if you only look at the whole heart structure or function, but this T1 mapping test, that can detect the tiniest changes in the heart, could identify all the patients with Fabry disease. It is very likely that this technique will become a key part in clinical examination of patients with Fabry disease. This finding will advance the clinical care of these patients around the world. The implications will be widespread. Heart disease is the number one cause of death for patients with Fabry disease. The earlier the disease can be pinpointed, the sooner treatment can start. The treatment for the disease halts the condition and prevents serious damage to the heart.”

Fabry disease is a genetic metabolic disorder that destroys the enzyme involved in fat metabolism. This enzyme dissolves fat so without it, those with the disease accumulate lethal fat deposits in their heart, kidneys, and brain. The condition affects 1 in 1,500 to 3,000 people, but was first believed to be a rare disease. Various countries now screen newborns for the condition that costs USD 200,000 yearly to treat through monthly infusions called enzyme replacement therapy. Symptoms of the disease include heart failure, blackouts, thickened walls of the heart, exercise intolerance, fluid accumulation in the legs, inability to lie down, strokes, tingling in the hands and feet, and changes in skin pigmentation.

The T1 mapping test can both detect the disease and evaluate damage to the heart. Dr. Oudit reported that this new MRI technique “is a wonderful story of collaboration--of patients, clinicians, scientists, and industry working together to find a new diagnostic tool.”

“As an organization, we are excited to be part of these developments through the research from the University of Alberta,” said Mauro Chies, acting vice-president of clinical supports for Alberta Health Services. “This is a significant advancement in the detection of disease in a noninvasive environment for our patients. We hope to be able to advance these sequences on our MRIs in the near future, and look for ways to use it to evaluate and detect other disease conditions.”

The project was done in collaboration with Siemens Canada, Ltd. and Siemens Healthcare USA, Inc. (Malvern, PA, USA).

Related Links:

University of Alberta
University of Calgary
Siemens Healthcare



Gold Member
Solid State Kv/Dose Multi-Sensor
AGMS-DM+
Portable Radiology System
DRAGON ELITE & CLASSIC
New
Breast Imaging Workstation
SecurView
New
Wireless Handheld Ultrasound System
TE Air

Print article
Radcal

Channels

Nuclear Medicine

view channel
Image: The new SPECT/CT technique demonstrated impressive biomarker identification (Journal of Nuclear Medicine: doi.org/10.2967/jnumed.123.267189)

New SPECT/CT Technique Could Change Imaging Practices and Increase Patient Access

The development of lead-212 (212Pb)-PSMA–based targeted alpha therapy (TAT) is garnering significant interest in treating patients with metastatic castration-resistant prostate cancer. The imaging of 212Pb,... Read more

General/Advanced Imaging

view channel
Image: The Tyche machine-learning model could help capture crucial information. (Photo courtesy of 123RF)

New AI Method Captures Uncertainty in Medical Images

In the field of biomedicine, segmentation is the process of annotating pixels from an important structure in medical images, such as organs or cells. Artificial Intelligence (AI) models are utilized to... Read more

Imaging IT

view channel
Image: The new Medical Imaging Suite makes healthcare imaging data more accessible, interoperable and useful (Photo courtesy of Google Cloud)

New Google Cloud Medical Imaging Suite Makes Imaging Healthcare Data More Accessible

Medical imaging is a critical tool used to diagnose patients, and there are billions of medical images scanned globally each year. Imaging data accounts for about 90% of all healthcare data1 and, until... Read more
Copyright © 2000-2024 Globetech Media. All rights reserved.