We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress
Sign In
Advertise with Us
GLOBETECH PUBLISHING LLC

Download Mobile App




Curved Detector Concept Brings Clearer and Safer X-Rays Closer to Reality

By MedImaging International staff writers
Posted on 21 Dec 2021
Print article
Image: Curved Detector Concept Brings Clearer and Safer X-Rays Closer to Reality (Photo courtesy of University of Surrey)
Image: Curved Detector Concept Brings Clearer and Safer X-Rays Closer to Reality (Photo courtesy of University of Surrey)

Researchers have identified key design rules for making curved X-ray detectors, bringing clearer and safer X-rays a step closer to reality.

Researchers at the University of Surrey (Guildford, Surrey, UK) have identified the design rules for a special class of “inorganic in organic” semiconductors. By tuning the molecular weight of the bismuth oxide nanoparticle sensitized organic semiconductors to lengthen the polymer chains, the researchers are paving the way towards making more robust, curved digital detectors with high sensitivity, or digital film.

Although the use of digital flat panel detectors has enabled radiographers to examine X-rays much more quickly compared with old-fashioned X-ray sensitive photographic films and to make quicker diagnoses, flat panels are ill-suited to the complex shape and geometry of the human body. The reliance purely on flat panels means there is unavoidable distortion around the edges of images. Flat panels also prevent an accurate registration of the X-ray dose delivered, a key feature towards enabling safer radiation therapy and minimizing secondary tumors. Efforts to create flexible detectors have so far been unsuccessful owing to the brittle characteristics of the rigid inorganic semiconductors used to make them. Some curvature has been achieved through using a thinner layer of semiconductor, but this has compromised performance levels and resulted in poor quality images.

“Our curved detector concept has shown exceptional mechanical robustness and enables bending radii as small as 1.3mm,” said Prabodhi Nanayakkara, lead author of the study and PhD student at the University of Surrey. “The use of organic or ‘inorganic in organic’ semiconductors is also far more cost effective than conventional inorganic semiconductors made from silicon or germanium, which require expensive crystal growth methods. Our approach potentially offers a significant commercial advantage.”

“The technology we’re demonstrating will help create a revolutionary new high sensitivity X-ray detector that is scalable, due to the design and materials adopted,” said Professor Ravi Silva, Director of Surrey’s Advanced Technology Institute. “This technology has huge potential in medical applications and other X-ray uses, so we’re working with a spinout company, SilverRay, and hope to turn this technology into the X-ray detector of choice for high sensitivity, high resolution, flexible large area detectors.”

Related Links:
University of Surrey 

Gold Member
Solid State Kv/Dose Multi-Sensor
AGMS-DM+
Portable Radiology System
DRAGON ELITE & CLASSIC
Color Doppler Ultrasound System
DRE Crystal 4PX
New
Ultrasound System
Voluson Signature 18

Print article
Radcal

Channels

MRI

view channel
Image: The emerging role of MRI alongside PSA testing is redefining prostate cancer diagnostics (Photo courtesy of 123RF)

Combining MRI with PSA Testing Improves Clinical Outcomes for Prostate Cancer Patients

Prostate cancer is a leading health concern globally, consistently being one of the most common types of cancer among men and a major cause of cancer-related deaths. In the United States, it is the most... Read more

Nuclear Medicine

view channel
Image: The new SPECT/CT technique demonstrated impressive biomarker identification (Journal of Nuclear Medicine: doi.org/10.2967/jnumed.123.267189)

New SPECT/CT Technique Could Change Imaging Practices and Increase Patient Access

The development of lead-212 (212Pb)-PSMA–based targeted alpha therapy (TAT) is garnering significant interest in treating patients with metastatic castration-resistant prostate cancer. The imaging of 212Pb,... Read more

Imaging IT

view channel
Image: The new Medical Imaging Suite makes healthcare imaging data more accessible, interoperable and useful (Photo courtesy of Google Cloud)

New Google Cloud Medical Imaging Suite Makes Imaging Healthcare Data More Accessible

Medical imaging is a critical tool used to diagnose patients, and there are billions of medical images scanned globally each year. Imaging data accounts for about 90% of all healthcare data1 and, until... Read more
Copyright © 2000-2024 Globetech Media. All rights reserved.