Features Partner Sites Information LinkXpress
Sign In
Advertise with Us
GLOBETECH PUBLISHING LLC

Download Mobile App




Determining How Ions Degrade DNA May Enhance Radiotherapy for Cancer Patients

By MedImaging International staff writers
Posted on 04 Aug 2014
Icelandic scientists now have a better determination of how short DNA strands decompose in microseconds. They discovered new fragmentation pathways that occur universally when DNA strands are exposed to metal ions from a range of alkaline and alkaline earth elements. These new insights could help optimize tumor therapy through a better determination of how radiation and its by-products, reactive intermediate particles, interact with complex DNA structures.

These ions tend to replace protons in the DNA backbone, and at the same time, trigger a reactive conformation, which leads more readily to fragmentation. Dr. Andreas Piekarczyk, from the University of Iceland (Reykjavík), and colleagues published their findings June 2014 in the European Physical Journal D.

In cancer radiotherapy, it is not the radiation by itself that directly damages the DNA strands, or oligonucleotides. Instead, it is the secondary reactive particles, leading to the creation of charged intermediates. The researchers have examined one of these charged intermediates in the form of so-called protonated metastable DNA hexamers. In so doing, the investigators created selected oligonucleotide-metal-ion complexes that they selected to have between zero and six metal ions. They then tracked these complexes’ fragmentation reactions using time-of-flight mass spectrometry. By comparing the different species, they could deduce how the underlying metal-ion-induced oligonucleotide fragmentation works.

The scientists discovered that metal ion-induced fragmentation of oligonucleotides is universal with all alkaline and alkaline earth metal ions, for example, lithium, Li+; potassium, K+; rubidium, Rb+; magnesium, Mg2+; and calcium, Ca2+. They had earlier arrived at the same conclusion for sodium ions, which are abundant in nature, in the form of sodium chloride. Once the number of sodium ions per nucleotide is high enough, the study revealed, it induces an unanticipated oligonucleotide fragmentation reaction.

Related Links:

University of Iceland



Gold Member
Solid State Kv/Dose Multi-Sensor
AGMS-DM+
PACS Workstation
CHILI Web Viewer
Ultrasound Needle Guide
Ultra-Pro II
Color Doppler Ultrasound System
DRE Crystal 4PX
Read the full article by registering today, it's FREE! It's Free!
Register now for FREE to MedImaging.net and get complete access to news and events that shape the world of Radiology.
  • Free digital version edition of Medical Imaging International sent by email on regular basis
  • Free print version of Medical Imaging International magazine (available only outside USA and Canada).
  • Free and unlimited access to back issues of Medical Imaging International in digital format
  • Free Medical Imaging International Newsletter sent every week containing the latest news
  • Free breaking news sent via email
  • Free access to Events Calendar
  • Free access to LinkXpress new product services
  • REGISTRATION IS FREE AND EASY!
Click here to Register








Channels

Ultrasound

view channel
Image: CAM figures of testing images (Photo courtesy of SPJ; DOI:10.34133/research.0319)

Diagnostic System Automatically Analyzes TTE Images to Identify Congenital Heart Disease

Congenital heart disease (CHD) is one of the most prevalent congenital anomalies worldwide, presenting substantial health and financial challenges for affected patients. Early detection and treatment of... Read more

Nuclear Medicine

view channel
Image: Researchers have identified a new imaging biomarker for tumor responses to ICB therapy (Photo courtesy of 123RF)

New PET Biomarker Predicts Success of Immune Checkpoint Blockade Therapy

Immunotherapies, such as immune checkpoint blockade (ICB), have shown promising clinical results in treating melanoma, non-small cell lung cancer, and other tumor types. However, the effectiveness of these... Read more

Imaging IT

view channel
Image: The new Medical Imaging Suite makes healthcare imaging data more accessible, interoperable and useful (Photo courtesy of Google Cloud)

New Google Cloud Medical Imaging Suite Makes Imaging Healthcare Data More Accessible

Medical imaging is a critical tool used to diagnose patients, and there are billions of medical images scanned globally each year. Imaging data accounts for about 90% of all healthcare data1 and, until... Read more
Copyright © 2000-2024 Globetech Media. All rights reserved.