Features Partner Sites Information LinkXpress
Sign In
Advertise with Us
GLOBETECH PUBLISHING LLC

Download Mobile App




Radiation Risk Predicted for Astronauts on Space Station

By MedImaging staff writers
Posted on 25 Feb 2008
An accurate method predicts the doses of radiation that astronauts will receive aboard the orbiting European laboratory module, Columbus, recently attached to the International Space Station (ISS).

The radiation environment close to Earth consists mainly of particles trapped in the Earth's magnetic field, particles that arrive from deep space called Galactic Cosmic Rays (GCRs), and particles expelled from the Sun during solar eruptions. These components vary with time, mainly due to the unpredictable activity of the Sun, which influences the Earth's magnetic field. In turn, the Earth's field determines the extent of the trapped particles and how well Earth is shielded from incoming GCRs.

Beyond the Earth's magnetic field, spacecraft and their occupants are exposed to the full force of the GCRs and the solar eruptions. Missions to the Moon and Mars venture into this harsher and unpredictable radiation environment for periods of many months or even years.

A new software package accurately simulates the physics of radiation particles passing through spacecraft walls and human bodies. Such techniques will be essential to use for calculating the radiation doses received by astronauts on future voyages to the Moon and Mars.

The project, funded by European Space Agency's (ESA; Paris, France; www.esa.int) General Studies Program and the Swedish National Space Board (SNSB; Solna, Sweden), was initiated by Christer Fuglesang of ESA's European Astronaut Corps. The ESA simulation is called Dose Estimation by Simulation of the International Space Station (ISS) Radiation Environment (DESIRE). "The project was designed to provide a European capability in accurately predicting radiation doses onboard Columbus,” stated Petteri Nieminen, ESA's technical officer on the study.

To predict accurately the radiation risk faced by astronauts, scientists and engineers must tackle three separate problems: How much radiation is hitting the space vehicle? How much of that radiation is blocked by the available shielding? What are the biologic effects of the radiation on the astronauts?

To provide the environmental information, ESA is flying a standard radiation monitor on a number of its spacecraft, including Proba-1, Integral, Rosetta, GIOVE-B, Herschel, and Planck. Known as the Standard Radiation Environment Monitor (SREM), it measures high-energy radiation particles. It was developed and manufactured by Oerlikon Space (Zurich, Switzerland) in cooperation with Paul Scherrer Institute Villigen PSI, Switzerland) under a development contract from ESA.


Related Links:
European Space Agency
Oerlikon Space
Paul Scherrer Institute
Gold Member
Solid State Kv/Dose Multi-Sensor
AGMS-DM+
New
1.5T MRI System
uMR 670
New
Digital Radiography Generator
meX+20BT lite
New
Remote Controlled Digital Radiography and Fluoroscopy System
Eco Track-DRF - MARS 50/MARS50+/MARS 65/MARS 80
Read the full article by registering today, it's FREE! It's Free!
Register now for FREE to MedImaging.net and get complete access to news and events that shape the world of Radiology.
  • Free digital version edition of Medical Imaging International sent by email on regular basis
  • Free print version of Medical Imaging International magazine (available only outside USA and Canada).
  • Free and unlimited access to back issues of Medical Imaging International in digital format
  • Free Medical Imaging International Newsletter sent every week containing the latest news
  • Free breaking news sent via email
  • Free access to Events Calendar
  • Free access to LinkXpress new product services
  • REGISTRATION IS FREE AND EASY!
Click here to Register








Channels

Ultrasound

view channel
Image: The portable ultrasound system uses AI to speed up triage for patients with suspected injuries (Photo courtesy of 123RF)

Portable Ultrasound Tool Uses AI to Detect Arm Fractures More Quickly

Suspected injuries to the upper limbs are a major reason for visits to hospital emergency departments. Currently, wait times for an X-ray and subsequent doctor consultation can vary widely, typically ranging... Read more

Nuclear Medicine

view channel
Image: Researchers have identified a new imaging biomarker for tumor responses to ICB therapy (Photo courtesy of 123RF)

New PET Biomarker Predicts Success of Immune Checkpoint Blockade Therapy

Immunotherapies, such as immune checkpoint blockade (ICB), have shown promising clinical results in treating melanoma, non-small cell lung cancer, and other tumor types. However, the effectiveness of these... Read more

Imaging IT

view channel
Image: The new Medical Imaging Suite makes healthcare imaging data more accessible, interoperable and useful (Photo courtesy of Google Cloud)

New Google Cloud Medical Imaging Suite Makes Imaging Healthcare Data More Accessible

Medical imaging is a critical tool used to diagnose patients, and there are billions of medical images scanned globally each year. Imaging data accounts for about 90% of all healthcare data1 and, until... Read more
Copyright © 2000-2024 Globetech Media. All rights reserved.