We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress
Sign In
Advertise with Us
GLOBETECH PUBLISHING LLC

Download Mobile App




Oxygen-Enhanced MRI Technology Allows Cancer Doctors to See Inside Tumors

By MedImaging International staff writers
Posted on 20 Mar 2023
Print article
Image: New scan measures tumor oxygen levels in real-time to help guide treatment (Photo courtesy of ICR)
Image: New scan measures tumor oxygen levels in real-time to help guide treatment (Photo courtesy of ICR)

Since the 1950s, researchers have been aware of the difficulty in effectively treating tumors deprived of oxygen, a problem that is further exacerbated when treating them with radiotherapy. In spite of this, patients are not routinely subjected to tests that evaluate tumor oxygen levels due to the absence of a single cost-effective, accurate, and readily available test. Now, imaging researchers have come closer to accomplishing their goal of identifying cancers that are deprived of oxygen, which would aid in tailoring effective, targeted treatments for these cancers.

A team of researchers from The University of Manchester (Manchester, UK) and The Institute of Cancer Research (ICR, London, UK) achieved this breakthrough by combining two cutting-edge technologies: an MRI scanner that also delivers radiotherapy - called MR-Linac - to measure the oxygen levels in tumors.

In a study involving 11 head and neck cancer patients, researchers successfully performed scans using the MR-Linac machine and subsequently generated maps of oxygen levels - a first in this field. It is important to note that this technology has the potential to be applicable to most types of cancer. During the process, patients inhaled room air through a mask, followed by pure oxygen to bathe the tumor with the gas. Oxygen-enhanced MRI, as the technique is called, was able to distinguish between tumor portions with different oxygen levels; areas with good oxygenation showed varied responses compared to those that were oxygen-depleted, thereby helping to identify the sections of the tumor that were starved of oxygen and may be resistant to radiotherapy.

“This imaging lets us see inside tumors and helps us understand why some people with cancer need an extra boost to get effective treatment. This is an important step towards the goal of changing treatment based on imaging biology,” said lead author Professor James O’Connor, Professor of Quantitative Biomedical Imaging at The Institute of Cancer Research.

“The MR-Linac is an exciting technology that combines highly precise imaging and radiotherapy delivery that allows for real-time imaging,” added first author Dr. Michael Dubec from The University of Manchester. “We are tremendously excited about what is the first application in humans of 'oxygen-enhanced MRI', developed as a result of a multi-disciplinary team working across the country which has exciting implications on patient outcomes.”

Related Links:
The University of Manchester
ICR

Gold Member
Solid State Kv/Dose Multi-Sensor
AGMS-DM+
New
Wireless Handheld Ultrasound System
TE Air
New
Ultrasound Needle Guide
Ultra-Pro II
New
Color Doppler Ultrasound System
DRE Crystal 4PX

Print article

Channels

Radiography

view channel
:	Image: The AI model could be a valuable adjunct to human radiologists in breast cancer diagnoses and risk prediction (Photo courtesy of 123RF)

AI Model Predicts 5-Year Breast Cancer Risk from Mammograms

Approximately 13% of U.S. women, or one in every eight, are predicted to develop invasive breast cancer over their lifetime, with 1 in 39 women (3%) succumbing to the illness, according to the American... Read more

Nuclear Medicine

view channel
Image: The AI system uses scintigraphy imaging for early diagnosis of cardiac amyloidosis (Photo courtesy of 123RF)

AI System Automatically and Reliably Detects Cardiac Amyloidosis Using Scintigraphy Imaging

Cardiac amyloidosis, a condition characterized by the buildup of abnormal protein deposits (amyloids) in the heart muscle, severely affects heart function and can lead to heart failure or death without... Read more

General/Advanced Imaging

view channel
Image: The Cinematic Reality app enables interaction with realistic renderings of human anatomy (Photo courtesy of Siemens)

AR Application Turns Medical Scans Into Holograms for Assistance in Surgical Planning

Siemens Healthineers (Erlangen, Germany) has launched an app designed for Apple Vision Pro that allows users including surgeons, medical students, or patients to view immersive, interactive holograms of... Read more

Imaging IT

view channel
Image: The new Medical Imaging Suite makes healthcare imaging data more accessible, interoperable and useful (Photo courtesy of Google Cloud)

New Google Cloud Medical Imaging Suite Makes Imaging Healthcare Data More Accessible

Medical imaging is a critical tool used to diagnose patients, and there are billions of medical images scanned globally each year. Imaging data accounts for about 90% of all healthcare data1 and, until... Read more

Industry News

view channel
Image: Samsung Medison CEO Mr. Yongkwan Kim and Bracco Imaging CEO Dr. Fulvio Renoldi Bracco endorsed a MoU agreement (Photo courtesy of Bracco Group)

Samsung and Bracco Enter Into New Diagnostic Ultrasound Technology Agreement

Samsung Medison (Seoul, South Korea) and Bracco Imaging (Milan, Italy) have entered into a Memorandum of Understanding (MoU) agreement to pioneer a new area for diagnostic ultrasound devices and contrast agents.... Read more
Copyright © 2000-2024 Globetech Media. All rights reserved.