We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress
Sign In
Advertise with Us
GLOBETECH PUBLISHING LLC

Download Mobile App




New Research Visualizes Hydraulic Forces and Cardiac Blood Flow

By MedImaging International staff writers
Posted on 08 Mar 2017
Print article
Image: New research shows the relationship between hydraulic forces and cardiac blood flow (Photo courtesy of the KTH Royal Institute of Technology).
Image: New research shows the relationship between hydraulic forces and cardiac blood flow (Photo courtesy of the KTH Royal Institute of Technology).
Researchers have discovered that the ventricles of the heart are filled with the help of hydraulic forces, similar to those used in hydraulic brakes in vehicles and other mechanical devices.

Until today, blood flow mechanics during diastole have only been partially understood. The new discovery suggests that hydraulic forces, together with the heart muscle protein titin both help fill the ventricles with blood. Hydraulic forces are the pressure that liquids exert on an area. The forces are affected by blood pressure in the heart, as well as the difference in size between the ventricles and the atria. The hydraulic forces that were found to exist are a result of the fact that the ventricle is larger than the atrium.

The discovery was made by researchers at the Karolinska Institutet, and the KTH Royal Institute of Technology and was published online, in the March 3, 2017, issue of the journal Nature Scientific Reports. The researchers enlisted healthy participants for the study, and used Cardiovascular Magnetic Resonance (CMR) imaging to measure the size of both heart chambers during the diastole phase. The results showed that the atrium was effectively smaller during the filling process. According to the researchers, it is import to measure both the atrium and ventricle, and look at their relative dimensions during heart failure, rather than focusing only on the size of the ventricles.

Dr. Martin Ugander, physician and associate professor at the Karolinska Institutet, said, "Although this might seem simple and obvious, the impact of the hydraulic force on the heart's filling pattern has been overlooked. Our observation is exciting since it can lead to new types of therapies for heart failure involving trying to reduce the size of the atrium.”

Gold Member
Solid State Kv/Dose Multi-Sensor
AGMS-DM+
DR Flat Panel Detector
1500L
New
Ultrasound System
P20 Elite
New
Ultrasound System
Voluson Signature 18

Print article

Channels

Ultrasound

view channel
Image: The powerful machine learning algorithm can “interpret” echocardiogram images and assess key findings (Photo courtesy of 123RF)

Largest Model Trained On Echocardiography Images Assesses Heart Structure and Function

Foundation models represent an exciting frontier in generative artificial intelligence (AI), yet many lack the specialized medical data needed to make them applicable in healthcare settings.... Read more

Nuclear Medicine

view channel
Image: The multi-spectral optoacoustic tomography (MSOT) machine generates images of biological tissues (Photo courtesy of University of Missouri)

New Imaging Technique Monitors Inflammation Disorders without Radiation Exposure

Imaging inflammation using traditional radiological techniques presents significant challenges, including radiation exposure, poor image quality, high costs, and invasive procedures. Now, new contrast... Read more

Imaging IT

view channel
Image: The new Medical Imaging Suite makes healthcare imaging data more accessible, interoperable and useful (Photo courtesy of Google Cloud)

New Google Cloud Medical Imaging Suite Makes Imaging Healthcare Data More Accessible

Medical imaging is a critical tool used to diagnose patients, and there are billions of medical images scanned globally each year. Imaging data accounts for about 90% of all healthcare data1 and, until... Read more
Copyright © 2000-2024 Globetech Media. All rights reserved.