We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress
Sign In
Advertise with Us
GLOBETECH PUBLISHING LLC

Download Mobile App




Virtual Reality Technologies Can Dramatically Reduce Surgical Planning Times and Increase Accuracy

By MedImaging International staff writers
Posted on 23 Mar 2016
Print article
Image: 3D virtual reality rendering of organs for surgical planning can dramatically improve patient outcomes (Photo courtesy of iData Research).
Image: 3D virtual reality rendering of organs for surgical planning can dramatically improve patient outcomes (Photo courtesy of iData Research).
New virtual-reality technologies that use medical images and data from various sources have the potential to dramatically improve patient outcomes.

One recent clinical trial carried out by pediatric surgeons at Stanford University Medical Center (SUMC; Stanford, CA, USA), has enabled surgeons and radiologists to develop more accurate surgical plans in 40% less time. The trial also changed the role of the radiologists who became more involved in treatment planning, and prepared data sets for the surgeons. Surgeons in the SUMC trial used a virtual-reality platform developed by EchoPixel (Mountain View, CA, USA). Other trials have also shown that surgical accuracy can be increased by 10%.

The new technologies will enable doctors to interact with 3-D Magnetic Resonance Imaging (MRI) and ultrasound rendered images of an organ. Smart styluses and other hardware can even provide resistance and tactile feedback similar to an actual operation. Virtual reality could be especially useful in medical training, although widespread adoption of such technology will take several more years, as medical professionals are not willing to make abrupt changes in their way of working.

Sandeep Gupta, manager of Biomedical Image Analysis, GE Global Research, said, “VR gives a very immersive way of looking at all this data, which is working to integrate virtual reality into its existing imaging equipment. Doctors may be able to see which brain regions are affected by a neurodegenerative disease, for example, or which neural pathways information and signals are flowing through.”

Related Links:

SUMC
EchoPixel


Gold Member
Solid State Kv/Dose Multi-Sensor
AGMS-DM+
New
X-Ray Detector
FDR-D-EVO III
Ultrasound Software
UltraExtend NX
New
Enterprise Imaging & Reporting Solution
Syngo Carbon

Print article
Radcal

Channels

MRI

view channel
Image: Diamond dust offers a potential alternative to the widely used contrast agent gadolinium in MRI (Photo courtesy of Max Planck Institute)

Diamond Dust Could Offer New Contrast Agent Option for Future MRI Scans

Gadolinium, a heavy metal used for over three decades as a contrast agent in medical imaging, enhances the clarity of MRI scans by highlighting affected areas. Despite its utility, gadolinium not only... Read more

Nuclear Medicine

view channel
Image: The new SPECT/CT technique demonstrated impressive biomarker identification (Journal of Nuclear Medicine: doi.org/10.2967/jnumed.123.267189)

New SPECT/CT Technique Could Change Imaging Practices and Increase Patient Access

The development of lead-212 (212Pb)-PSMA–based targeted alpha therapy (TAT) is garnering significant interest in treating patients with metastatic castration-resistant prostate cancer. The imaging of 212Pb,... Read more
Copyright © 2000-2024 Globetech Media. All rights reserved.