We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress
Sign In
Advertise with Us
GLOBETECH PUBLISHING LLC

Download Mobile App




Photoacoustic Endoscopy Could Improve Crohn's Treatment

By MedImaging International staff writers
Posted on 07 May 2019
Print article
Image: Researchers are working to miniaturize the endoscope so that it could be used in the working channel of a colonoscope; this would allow a surgeon to view photoacoustic images prior to performing treatment (Photo courtesy of Guan Xu, University of Michigan).
Image: Researchers are working to miniaturize the endoscope so that it could be used in the working channel of a colonoscope; this would allow a surgeon to view photoacoustic images prior to performing treatment (Photo courtesy of Guan Xu, University of Michigan).
A new study highlights a prototype photoacoustic (PA) imaging endoscope that could be used to characterize inflammation and fibrosis in Crohn’s disease (CD).

Developed at the University of Michigan (U-M; Ann Arbor, USA) and Heilongjiang University (Harbin, China), the capsule-shaped acoustic resolution PA endoscope, which is just 7X19 millimeters is size, is designed to perform mulitwavelength side-view scanning of the intestinal strictures characteristic of CD. The endoscopic probe delivers near infrared light (NIR) at 1310 nanometers, the wavelength absorbed by collagen protein, which is characteristic of fibrosis. The light absorption causes collagen to expand slightly, leading to a mechanical vibration that can be captured using ultrasound imaging.

The performance of the probe was tested in phantom experiments and an in-vivo rabbit trinitrobenzene sulfonic acid (TNBS) model with acute (inflammatory only) or chronic (mixed fibrotic and inflammatory) colitis. Motion artifacts (such as intestinal peristalsis and respiratory motion) were compensated for to improve image qualities. The probe successfully identified significant PA measurement differences between normal, acute, and chronic intestinal strictures, which were also confirmed by histopathology. The study was published in the May 2019 issue of Biomedical Optics Express.

“Currently, there is no imaging modality that can be used in the intestine to distinguish inflammation from fibrosis. The difficulty in accurately assessing the presence and development of fibrosis in the strictures adds a great deal of complexity to Crohn's disease management decisions,” said senior author Guan Xu, PhD, of U-M. “This new imaging technology could help more accurately plan therapy for each CD patient. This would allow more targeted treatment and help minimize any adverse effects that might result from treatment.”

PA imaging is based on non-ionizing laser pulses fired into biological tissues; some of the laser energy delivered is converted into heat, leading to transient thermoelastic expansion and subsequent wideband ultrasonic emission, which can be detected by ultrasonic transducers and analyzed to produce images. The magnitude of the PA signal is proportional to the local energy deposition, which can be confirmed by optical absorption contrast on the images of the targeted areas.

Related Links:
University of Michigan
Heilongjiang University

Gold Member
Solid State Kv/Dose Multi-Sensor
AGMS-DM+
New
Mobile Digital C-arm X-Ray System
HHMC-200D
New
Ultrasound System
P20 Elite
Silver Member
Mobile X-Ray Barrier
Lead Acrylic Mobile X-Ray Barriers

Print article

Channels

Ultrasound

view channel
Image: The powerful machine learning algorithm can “interpret” echocardiogram images and assess key findings (Photo courtesy of 123RF)

Largest Model Trained On Echocardiography Images Assesses Heart Structure and Function

Foundation models represent an exciting frontier in generative artificial intelligence (AI), yet many lack the specialized medical data needed to make them applicable in healthcare settings.... Read more

Nuclear Medicine

view channel
Image: The multi-spectral optoacoustic tomography (MSOT) machine generates images of biological tissues (Photo courtesy of University of Missouri)

New Imaging Technique Monitors Inflammation Disorders without Radiation Exposure

Imaging inflammation using traditional radiological techniques presents significant challenges, including radiation exposure, poor image quality, high costs, and invasive procedures. Now, new contrast... Read more

Imaging IT

view channel
Image: The new Medical Imaging Suite makes healthcare imaging data more accessible, interoperable and useful (Photo courtesy of Google Cloud)

New Google Cloud Medical Imaging Suite Makes Imaging Healthcare Data More Accessible

Medical imaging is a critical tool used to diagnose patients, and there are billions of medical images scanned globally each year. Imaging data accounts for about 90% of all healthcare data1 and, until... Read more
Copyright © 2000-2024 Globetech Media. All rights reserved.