We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress
Sign In
Advertise with Us
GLOBETECH PUBLISHING LLC

Download Mobile App




Optical Technology Monitors Cerebral Blood Flow Dynamics

By MedImaging International staff writers
Posted on 12 May 2018
Print article
Image: Laser light can measure blood flow in the brain of patients with stroke or traumatic brain injury (Photo courtesy of Srinivasan Lab/ UCD).
Image: Laser light can measure blood flow in the brain of patients with stroke or traumatic brain injury (Photo courtesy of Srinivasan Lab/ UCD).
A new study describes how a digital camera can be used to measure blood flow in the brain of patients with stroke or traumatic brain injury (TBI).

Developed by researchers at the University of California, Los Angeles (UCLA; USA), interferometric diffusing wave spectroscopy (iDWS) is based on transforming a standard complementary metal-oxide-semiconductor (CMOS) camera into a sensitive detector array by using multimode fiber (MMF) interferometry to identify weak light fluxes that probe deep into biological tissue. The method involves first splitting an emitted laser light beam into ‘sample’ and ‘reference’ paths, and then using the recombined signal to measure coherent light fluctuations.

The sample beam goes into the patient's head and another, stronger, reference beam is routed so that it reconnects with the sample beam before going to the detector, boosting the signal. The boosted signal can measure about 20 speckles of light simultaneously on a single CMOS digital camera chip, instead of necessitating multiple independent photon-counting detector channels. According to the researchers, the highly sensitive and parallel measurement technique is significantly cheaper and more robust than using an array of photon detectors. The study was published on April 26, 2018, in Optica.

“Light-scattering methods are widely used in soft matter physics and biomedical optics to probe dynamics in turbid media. These methods typically rely on fluctuations of coherent light intensity, and therefore cannot accommodate more than a few modes per detector,” concluded lead author Wenjun Zhou, PhD, and colleagues. “This limitation has hindered efforts to measure deep tissue blood flow with high speed, since weak diffuse light fluxes, together with low single-mode fiber throughput, result in low photon count rates. Our setup is very promising, and the cost should be lower.”

Diffusing-wave spectroscopy (DWS) is an optical technique that studies the dynamics of scattered light in the limit of strong multiple scattering. It has been widely used to study colloidal suspensions, foams, emulsions, gels, biological media, and other forms of soft matter. If carefully calibrated, DWS allows the quantitative measurement of microscopic motion in a soft material by identifying speckles (very small spots).

Related Links:
University of California, Los Angeles
Gold Member
Solid State Kv/Dose Multi-Sensor
AGMS-DM+
Ultrasound System
Acclarix AX9
Computed Tomography (CT) Scanner
Aquilion Serve SP
New
Color Doppler Ultrasound System
KC20

Print article

Channels

MRI

view channel
Image: Diamond dust offers a potential alternative to the widely used contrast agent gadolinium in MRI (Photo courtesy of Max Planck Institute)

Diamond Dust Could Offer New Contrast Agent Option for Future MRI Scans

Gadolinium, a heavy metal used for over three decades as a contrast agent in medical imaging, enhances the clarity of MRI scans by highlighting affected areas. Despite its utility, gadolinium not only... Read more

Nuclear Medicine

view channel
Image: The multi-spectral optoacoustic tomography (MSOT) machine generates images of biological tissues (Photo courtesy of University of Missouri)

New Imaging Technique Monitors Inflammation Disorders without Radiation Exposure

Imaging inflammation using traditional radiological techniques presents significant challenges, including radiation exposure, poor image quality, high costs, and invasive procedures. Now, new contrast... Read more

Imaging IT

view channel
Image: The new Medical Imaging Suite makes healthcare imaging data more accessible, interoperable and useful (Photo courtesy of Google Cloud)

New Google Cloud Medical Imaging Suite Makes Imaging Healthcare Data More Accessible

Medical imaging is a critical tool used to diagnose patients, and there are billions of medical images scanned globally each year. Imaging data accounts for about 90% of all healthcare data1 and, until... Read more
Copyright © 2000-2024 Globetech Media. All rights reserved.