Features | Partner Sites | Information | LinkXpress
Sign In
ElsMed
Ampronix
Schiller

New Approaches for Transcanial Ultrasound Used for the Treatment of Brain Tumors and Targeted Drug Delivery

By Medimaging International staff writers
Posted on 17 Aug 2014
Image: Ultrasound image of the Circle of Willis (Photo courtesy of the Swedish Cerebrovascular Center, Seattle, WA, USA).
Image: Ultrasound image of the Circle of Willis (Photo courtesy of the Swedish Cerebrovascular Center, Seattle, WA, USA).
Image: Doppler ultrasound waveform of flow velocities in the middle cerebral artery (Photo courtesy of the Swedish Cerebrovascular Center, Seattle, WA, USA).
Image: Doppler ultrasound waveform of flow velocities in the middle cerebral artery (Photo courtesy of the Swedish Cerebrovascular Center, Seattle, WA, USA).
A study completed by a Finnish researcher provides new insights into the limitations and potential new directions for the future advancement of transcranial ultrasound therapy. Active research is ongoing in this field, which potentially can be applied to the treatment of brain tumors and targeted drug delivery.

The therapy modality has already been effectively applied to the treatment of neuropathic pain disorder and essential tremors. The benefits of transcranial ultrasound therapy include minimal invasiveness, because the treatment is delivered to the brain by transmitting ultrasound through the intact skull of the patient. The study focuses on two issues that may potentially restrict the applicability of transcranial ultrasound: skull-base heating and formation of standing-waves.

As the ultrasound beam encounters the skull bone, part of the beam’s energy is transferred into the skull as heat. In the study, it was found that the heating of the skull-base during transcranial ultrasound therapy can result in hazardous temperature elevations when the sonications are performed close to the skull-base. Three new approaches were developed in this study to counteract this potentially hazardous phenomenon.

However, standing waves are formed in the ultrasound field when waves reflect from the surface of the skull bone. During transcranial ultrasound therapy, the ultrasound amplitude can reach higher levels than intended if these reflections are not taken into account during the initial treatment planning. The study, a project that came out of a PhD thesis by Aki Pulkkinen, MSc, from the University of Eastern Finland (Joensuu), revealed that the formation of standing waves is greatly reduced when specifically designed large-area ultrasound transducers are used.

The study also introduces a model to numerically simulate clinical patient treatments performed with transcranial ultrasound therapy. The predictions produced by the model were compared to observations done in clinical patient trials performed earlier. The predictions were found to be of sufficient accuracy for an initial treatment planning. However, more accurate characterization of the acoustical and thermal parameters involved in transcranial ultrasound therapy is nonetheless required.

The Ph.D. thesis by Aki Pulkkinen, MSc, entitled Simulation Methods in Transcranial Ultrasound Therapy, is available online (please see Related Links below).

Related Links:

Simulation Methods in Transcranial Ultrasound Therapy
University of Eastern Finland



Channels

Radiography

view channel
Image: The AeroDR Premium is an extremely light cassette-type digital radiography detector with improved strength (Photo courtesy of Konica Minolta).

Cassette-Type Digital Radiography Detector Designed to Reduce Waiting Times

Key features of a new cassette-type digital radiography (DR) system includes an extremely light weight of 2.6 kg; improved load resistance and drop impact resistance; and reduced waiting time due to shortened... Read more

MRI

view channel
Image: MagLab’s 900 MHz magnet (Photo courtesy of FSU – Florida State University).

High Magnetic Field MRI Technology Provides Comprehensive Analysis of Strokes

A new, novel way to categorize the severity of a stroke, help in diagnosis, and assesse potential treatments has been demonstrated by US researchers. “Stroke affects millions of adults and children... Read more

Nuclear medicine

view channel
Image: Symbia Evo Excel combines excellent SPECT image resolution and detector sensitivity with a small room size requirement thus designed to fit into almost any existing nuclear medicine exam room (Photo courtesy of Siemens Healthcare).

New SPECT System Scans Virtually Every Patient and Is Designed to Fit into Most Nuclear Medicine Exam Rooms

A new single photon emission computed tomography (SPECT) system combines image resolution and detector sensitivity with the smallest room size requirement in its class. Siemens Healthcare’s (Erlangen,... Read more

General/Advanced Imaging

view channel
Image: A collaborative effort between EPFL, CNRS, ENS Lyon, CPE Lyon, and ETH Zürich has led to the development of a novel approach that can considerably improve the capabilities of medical imaging with safer procedures for the patient (Photo courtesy of EPFL - Ecole Polytechnique Fédérale de Lausanne).

Collaboration to Make Diagnostic Medical Imaging Less Hazardous Using Hyperpolarization Agents

A collaborative effort by scientists has led to the development of an innovative strategy that can considerably improve the capabilities of medical imaging with safer procedures for the patient.... Read more

Imaging IT

view channel
Image: The Coronis Uniti diagnostic image display supports PACS and breast imaging in color and grayscale (Photo courtesy of Barco).

Diagnostic Image Display Designed for Both PACS and Breast Imaging

The first diagnostic display designed for both picture archiving and communication systems (PACS) and breast imaging provides excellent image quality, inventive productivity features, and a focus on ergonomics.... Read more

Industry News

view channel

Global Partnership Provides Treatment Planning Support for Modulated Arc Radiotherapy

Varian Medical Systems (Palo Alto, CA, USA) Eclipse treatment planning software can now be used to plan modulated arc radiotherapy (mARC) treatments at sites using Siemens Healthcare (Erlangen, Germany) medical linear accelerators. Varian Medical Systems and Siemens Healthcare presented their range of solutions that... Read more
 
Copyright © 2000-2014 Globetech Media. All rights reserved.