Features | Partner Sites | Information | LinkXpress
Sign In
Schiller
Ampronix
ElsMed

New Approaches for Transcanial Ultrasound Used for the Treatment of Brain Tumors and Targeted Drug Delivery

By Medimaging International staff writers
Posted on 17 Aug 2014
Image: Ultrasound image of the Circle of Willis (Photo courtesy of the Swedish Cerebrovascular Center, Seattle, WA, USA).
Image: Ultrasound image of the Circle of Willis (Photo courtesy of the Swedish Cerebrovascular Center, Seattle, WA, USA).
Image: Doppler ultrasound waveform of flow velocities in the middle cerebral artery (Photo courtesy of the Swedish Cerebrovascular Center, Seattle, WA, USA).
Image: Doppler ultrasound waveform of flow velocities in the middle cerebral artery (Photo courtesy of the Swedish Cerebrovascular Center, Seattle, WA, USA).
A study completed by a Finnish researcher provides new insights into the limitations and potential new directions for the future advancement of transcranial ultrasound therapy. Active research is ongoing in this field, which potentially can be applied to the treatment of brain tumors and targeted drug delivery.

The therapy modality has already been effectively applied to the treatment of neuropathic pain disorder and essential tremors. The benefits of transcranial ultrasound therapy include minimal invasiveness, because the treatment is delivered to the brain by transmitting ultrasound through the intact skull of the patient. The study focuses on two issues that may potentially restrict the applicability of transcranial ultrasound: skull-base heating and formation of standing-waves.

As the ultrasound beam encounters the skull bone, part of the beam’s energy is transferred into the skull as heat. In the study, it was found that the heating of the skull-base during transcranial ultrasound therapy can result in hazardous temperature elevations when the sonications are performed close to the skull-base. Three new approaches were developed in this study to counteract this potentially hazardous phenomenon.

However, standing waves are formed in the ultrasound field when waves reflect from the surface of the skull bone. During transcranial ultrasound therapy, the ultrasound amplitude can reach higher levels than intended if these reflections are not taken into account during the initial treatment planning. The study, a project that came out of a PhD thesis by Aki Pulkkinen, MSc, from the University of Eastern Finland (Joensuu), revealed that the formation of standing waves is greatly reduced when specifically designed large-area ultrasound transducers are used.

The study also introduces a model to numerically simulate clinical patient treatments performed with transcranial ultrasound therapy. The predictions produced by the model were compared to observations done in clinical patient trials performed earlier. The predictions were found to be of sufficient accuracy for an initial treatment planning. However, more accurate characterization of the acoustical and thermal parameters involved in transcranial ultrasound therapy is nonetheless required.

The Ph.D. thesis by Aki Pulkkinen, MSc, entitled Simulation Methods in Transcranial Ultrasound Therapy, is available online (please see Related Links below).

Related Links:

Simulation Methods in Transcranial Ultrasound Therapy
University of Eastern Finland



Channels

Radiography

view channel

Program Devised to Supply Radiology Departments with Advanced Digital Radiography Systems

A program is designed to provide hospitals an avenue to upgrade their technology, while maximizing their existing investment. The program includes novel solutions to keep systems and technology up-to-date. Program allows imaging facilities to advance at their speed and budget from computed radiography (CR) using conventional... Read more

MRI

view channel
Image: Patients in a vegetative state had brain activity levels matching those of healthy controls while watching a Hitchcock film (Photo courtesy of Western University’s Lorina Naci).

Neuroscientists Differentiate Patients in Ongoing Vegetative State

Researchers are employing advanced brain scanning techniques by showing that a short movie can be used to detect consciousness in vegetative state patients. The study included a Canadian participant... Read more

Nuclear medicine

view channel

PET-CT Imaging Forecasts Survival of Lymphoma Better Than Standard Imaging Strategies

Positron emission tomography-computed tomography (PET-CT) imaging is more accurate than traditional CT scanning in gauging response to treatment and predicting survival in patients with follicular lymphoma, and should be used routinely in clinical practice. The findings were published September 18, 2014, in the journal... Read more

General/Advanced Imaging

view channel

New Imaging Technology Shows Little Discrepancy Between Breast Cancer, Healthy Tissues

A new application has been effectively evaluated that will help surgeons better differentiate cancerous breast tissue from normal tissue, thereby decreasing the likelihood for repeat operations. The tool, called DESI (desorption electrospray ionization) mass spectrometry imaging, works by converting molecules into electrically... Read more

Imaging IT

view channel

Software Provides Enhanced Imaging Sharing Capabilities and Connection Consistency in the Case of Network Failure

Members of the physician information technology (IT) group at a US radiology practice are utilizing a new software technology to enhance its image sharing capabilities and provide immediate cluster failover in case of network failures. The Dicom Systems’ (Campbell, CA, USA) enterprise imaging solutions will be utilized... Read more

Industry News

view channel

Global Partnership Provides Treatment Planning Support for Modulated Arc Radiotherapy

Varian Medical Systems (Palo Alto, CA, USA) Eclipse treatment planning software can now be used to plan modulated arc radiotherapy (mARC) treatments at sites using Siemens Healthcare (Erlangen, Germany) medical linear accelerators. Varian Medical Systems and Siemens Healthcare presented their range of solutions that... Read more
 
Copyright © 2000-2014 Globetech Media. All rights reserved.