Features | Partner Sites | Information | LinkXpress
Sign In
Schiller
TeraRecon
VIEWORKS

New Approaches for Transcanial Ultrasound Used for the Treatment of Brain Tumors and Targeted Drug Delivery

By Medimaging International staff writers
Posted on 17 Aug 2014
Image: Ultrasound image of the Circle of Willis (Photo courtesy of the Swedish Cerebrovascular Center, Seattle, WA, USA).
Image: Ultrasound image of the Circle of Willis (Photo courtesy of the Swedish Cerebrovascular Center, Seattle, WA, USA).
Image: Doppler ultrasound waveform of flow velocities in the middle cerebral artery (Photo courtesy of the Swedish Cerebrovascular Center, Seattle, WA, USA).
Image: Doppler ultrasound waveform of flow velocities in the middle cerebral artery (Photo courtesy of the Swedish Cerebrovascular Center, Seattle, WA, USA).
A study completed by a Finnish researcher provides new insights into the limitations and potential new directions for the future advancement of transcranial ultrasound therapy. Active research is ongoing in this field, which potentially can be applied to the treatment of brain tumors and targeted drug delivery.

The therapy modality has already been effectively applied to the treatment of neuropathic pain disorder and essential tremors. The benefits of transcranial ultrasound therapy include minimal invasiveness, because the treatment is delivered to the brain by transmitting ultrasound through the intact skull of the patient. The study focuses on two issues that may potentially restrict the applicability of transcranial ultrasound: skull-base heating and formation of standing-waves.

As the ultrasound beam encounters the skull bone, part of the beam’s energy is transferred into the skull as heat. In the study, it was found that the heating of the skull-base during transcranial ultrasound therapy can result in hazardous temperature elevations when the sonications are performed close to the skull-base. Three new approaches were developed in this study to counteract this potentially hazardous phenomenon.

However, standing waves are formed in the ultrasound field when waves reflect from the surface of the skull bone. During transcranial ultrasound therapy, the ultrasound amplitude can reach higher levels than intended if these reflections are not taken into account during the initial treatment planning. The study, a project that came out of a PhD thesis by Aki Pulkkinen, MSc, from the University of Eastern Finland (Joensuu), revealed that the formation of standing waves is greatly reduced when specifically designed large-area ultrasound transducers are used.

The study also introduces a model to numerically simulate clinical patient treatments performed with transcranial ultrasound therapy. The predictions produced by the model were compared to observations done in clinical patient trials performed earlier. The predictions were found to be of sufficient accuracy for an initial treatment planning. However, more accurate characterization of the acoustical and thermal parameters involved in transcranial ultrasound therapy is nonetheless required.

The Ph.D. thesis by Aki Pulkkinen, MSc, entitled Simulation Methods in Transcranial Ultrasound Therapy, is available online (please see Related Links below).

Related Links:

Simulation Methods in Transcranial Ultrasound Therapy
University of Eastern Finland



Channels

Radiography

view channel
Image: Carestream New Cone Beam 3-D Orthopedic CT Imaging System (Photo courtesy of Carestream).

Design Partnership to Develop Novel 3-D Orthopedic CT Imaging System

A medical imaging company, and leading orthopedic and sports medicine specialists are working together to develop a 3-D Cone Beam CT (CBCT) Computed Tomography imaging system. The system, which is intended... Read more

MRI

view channel
Image: GE Healthcare SIGNA Explorer 1.5T MRI System (Photo courtesy of GE Healthcare).

New 1.5 T and 3.0 T MRI Scanners and Upgrade Programs Revealed at ECR 2015

Two new innovative 1.5-T Magnetic Resonance Imaging (MRI) systems have been unveiled at the 2015 European Congress of Radiology (ECR) in Vienna (Austria). The new systems consume 34% less power than... Read more

Nuclear medicine

view channel

PET/CT Dramatically More Effective at Diagnosing Heart Problems Than SPECT

Results of a study that compares the effectiveness of two heart imaging technologies, Single Photon Emission Computed Tomography (SPECT), and coronary-specific Positron Emission Tomography (cardiac PET/CT) have been presented at the 64th American College of Cardiology (ACC; Washington DC, USA) annual Scientific Session... Read more

General/Advanced Imaging

view channel
Image: Measuring the Magnetic Activity in the Brain of a Child, Using a MEG machine. (Photo courtesy of Children\'s Hospital of Philadelphia).

Study Suggests Language Delay Linked to Chromosome Deletion in Children with Neurological Disorders

A study found that children with neuro-developmental problems born with DNA duplications or deletions on part of chromosome 16, show measurable delays in their ability to process sound and language.... Read more

Imaging IT

view channel
Image: Schematic of the Virtual Multi-Site PACS (Photo courtesy of Carestream).

Shared Multisite Virtual PACS from Ten Individual PACS/RIS Systems Developed

The Cheshire and Merseyside districts in the UK have merged ten Picture Archiving and Communications Systems (PACS) and Radiology Information Systems (RIS) into one shared multi-site virtual PACS.... Read more

Industry News

view channel

Analysis of Worldwide CT Scanner Sector Released

A report by Kalorama Information (New York, NY, USA) analyzing the global Computed Tomography (CT) market has been published. The report surveyed the CT market outlook until 2018, and the drivers behind the changes. The report investigated CT market sizing, market forecast to 2018, analysis of trends, how the market... Read more
 
Copyright © 2000-2015 Globetech Media. All rights reserved.