Features | Partner Sites | Information | LinkXpress
Sign In
Demo Company

New Approaches for Transcanial Ultrasound Used for the Treatment of Brain Tumors and Targeted Drug Delivery

By Medimaging International staff writers
Posted on 17 Aug 2014
Image: Ultrasound image of the Circle of Willis (Photo courtesy of the Swedish Cerebrovascular Center, Seattle, WA, USA).
Image: Ultrasound image of the Circle of Willis (Photo courtesy of the Swedish Cerebrovascular Center, Seattle, WA, USA).
Image: Doppler ultrasound waveform of flow velocities in the middle cerebral artery (Photo courtesy of the Swedish Cerebrovascular Center, Seattle, WA, USA).
Image: Doppler ultrasound waveform of flow velocities in the middle cerebral artery (Photo courtesy of the Swedish Cerebrovascular Center, Seattle, WA, USA).
A study completed by a Finnish researcher provides new insights into the limitations and potential new directions for the future advancement of transcranial ultrasound therapy. Active research is ongoing in this field, which potentially can be applied to the treatment of brain tumors and targeted drug delivery.

The therapy modality has already been effectively applied to the treatment of neuropathic pain disorder and essential tremors. The benefits of transcranial ultrasound therapy include minimal invasiveness, because the treatment is delivered to the brain by transmitting ultrasound through the intact skull of the patient. The study focuses on two issues that may potentially restrict the applicability of transcranial ultrasound: skull-base heating and formation of standing-waves.

As the ultrasound beam encounters the skull bone, part of the beam’s energy is transferred into the skull as heat. In the study, it was found that the heating of the skull-base during transcranial ultrasound therapy can result in hazardous temperature elevations when the sonications are performed close to the skull-base. Three new approaches were developed in this study to counteract this potentially hazardous phenomenon.

However, standing waves are formed in the ultrasound field when waves reflect from the surface of the skull bone. During transcranial ultrasound therapy, the ultrasound amplitude can reach higher levels than intended if these reflections are not taken into account during the initial treatment planning. The study, a project that came out of a PhD thesis by Aki Pulkkinen, MSc, from the University of Eastern Finland (Joensuu), revealed that the formation of standing waves is greatly reduced when specifically designed large-area ultrasound transducers are used.

The study also introduces a model to numerically simulate clinical patient treatments performed with transcranial ultrasound therapy. The predictions produced by the model were compared to observations done in clinical patient trials performed earlier. The predictions were found to be of sufficient accuracy for an initial treatment planning. However, more accurate characterization of the acoustical and thermal parameters involved in transcranial ultrasound therapy is nonetheless required.

The Ph.D. thesis by Aki Pulkkinen, MSc, entitled Simulation Methods in Transcranial Ultrasound Therapy, is available online (please see Related Links below).

Related Links:

Simulation Methods in Transcranial Ultrasound Therapy
University of Eastern Finland



view channel
Image: Multimodal CT images obtained 2 hours 18 minutes after symptom onset in an 87-year-old woman with an NIH Stroke Scale of 15 and left hemisphere symptoms (Photo courtesy of Radiology 2015:257;2;510-520, and RSNA 2015).

Faster and Simpler Treatment for Stroke Patients Using Multiphase CT

The results of a new study show that multiphase Computed Tomography (CT) angiography brain-imaging could enable clinicians to treat Acute Ischemic Stroke (AIS) patients faster, and better, potentially saving lives.... Read more


view channel

Preventing Unnecessary Breast Biopsies Using MRI

The results of a new study have shown that a new Magnetic Resonance (MR) breast imaging technique could prevent unnecessary biopsies. The new technique, called Diffusion-Weighted Imaging with Background Suppression Magnetic Resonance Mammography (DWIBS-MRM), can be used to assess the diffusion of water molecules within tissue.... Read more

Nuclear medicine

view channel
Image: The whole body of a rat can be imaged for blood clots with one PET scan, overlaid here on an MRI image, using the FBP8 probe. The arrow points to a blood clot (Photo courtesy of the American Chemical Society).

Single PET Scan Could Replace Multiple Modalities in Detecting Blood Clots

Researchers have presented an experimental technique that could be used to discover blood clots using a single, fast, whole-body scan, at the 250th National Meeting and Exposition of the American Chemical... Read more

General/Advanced Imaging

view channel

Leading Vendor to Implement and Install Enterprise Imaging Platform for UK NHS

An agreement has been announced by a leading imaging platform provider for the implementation of the first Enterprise Imaging platform, part of a long-term agreement for the management of imaging data, for the UK City Hospitals Sunderland NHS Foundation Trust. The agreement covers the capture, storage, and exchange of... Read more

Imaging IT

view channel

Carestream Updates Healthcare IT Platform

Carestream has released updates for an advanced Internet Technology (IT) healthcare platform at the Röntgenveckan Radiology congress in Malmo (Sweden). The IT platform facilitates collaboration by enabling sharing of critical patient information such as Radiology images, videos, reports, and services with groups outside... Read more

Industry News

view channel

Viztek Acquired by Konica Minolta to Complement End-to-End Healthcare IT Solutions

Konica Minolta Medical Imaging (Wayne, NJ, USA), a leading medical diagnostic primary imaging provider, has announced the completed acquisition of Viztek (Garner, NC, USA), a company providing Healthcare Internet Technology solutions. The acquisition enhances Konica Minolta’s end-to-end healthcare IT capabilities, including... Read more
Copyright © 2000-2015 Globetech Media. All rights reserved.