Features | Partner Sites | Information | LinkXpress
Sign In
SCHILLER AG
AMPRONIX
TERARECON, INC.

Ultrasound Using Microbubble Contrast Agent Provides Way to Visualize Tumors

By Medimaging International staff writers
Posted on 10 Feb 2014
Image:  SFRP2 targeted microbubbles bound specifically to vessels (stained green) within angiosarcoma (right). A control without the targeted microbubbles (left) (Photo courtesy of UNC Health Care).
Image: SFRP2 targeted microbubbles bound specifically to vessels (stained green) within angiosarcoma (right). A control without the targeted microbubbles (left) (Photo courtesy of UNC Health Care).
Whereas ultrasound provides a less expensive and radiation-free way to identify and track cancer in comparison to technologies such as X-rays, computed tomography (CT), and magnetic resonance imaging (MRI) scans, ultrasound has seen limited use in cancer treatment because of its clarity and resolution problems. Nevertheless, researchers have overcome these hurdles by combining ultrasound with a contrast agent composed of tiny bubbles that pair with an antibody that many cancer cells produce at higher levels than do normal cells.

By binding to the protein SFRP2, the microbubble contrast agent greatly improves the resolution and tumor-detecting ability of scans produced by ultrasound. In an article published January 29, 2014, in the journal PLOS ONE, University of North Carolina (UNC) Lineberger Comprehensive Cancer Center (Chapel Hill, NC, USA) members Nancy Klauber-Demore, MD, professor of surgery and Paul Dayton, PhD, professor of biomedical engineering, from the UNC at Chapel Hill School of Medicine (USA) were able to visualize lesions created by angiosarcoma, a malignant cancer that develops on the walls of blood vessels.

“The SFRP2-moleculary targeted contrast agent showed specific visualization of the tumor vasculature,” said Dr. Klauber-DeMore. “In contrast, there was no visualization of normal blood vessels. This suggests that the contrast agent may help distinguish malignant from benign masses found on imaging.”

Dr. Klauber-DeMore’s lab was the first to discover that angiosarcoma cells produce an excess of SFRP2. Building on that discovery, her team focused on how to use the protein to better monitor the progress of the cancer within blood vessels. Using a mouse model, the researchers delivered the microbubble contrast agent by way of intravenous injection and tracked it using ultrasound.

Since SFRP2 is expressed in many cancers, including colon, breast, pancreas, ovarian, and kidney tumors, the technique could potentially be useful on a wide range of cancer types. Dr. Klauber-DeMore reported that her colleagues now want to determine how well the technique works with these other tumor types, as well as studying its effect on breast cancer.

The study’s findings have shown that the level of SFRP2 in tumors increases as tumors develop, so Dr. Klauber-DeMore’s team will in addition examine whether the technique can be used to monitor tumor growth. This would make it helpful in tracking patient response to chemotherapy. They will also investigate whether it can be used to identify and visualize very small tumors.

Because ultrasound is less expensive than commonly used imaging methods, such as MRI, the new technique could help lower costs to patients who need cancer treatment. Moreover, because ultrasound is more portable than other imaging technology, it may be useful in providing treatment in rural and low-resource areas across North Carolina and throughout the United States.

Related Links:

University of North Carolina Lineberger Comprehensive Cancer Center
University of North Carolina at Chapel Hill School of Medicine



RADCAL
RTI ELECTRONICS AB
SuperSonic Imagine

Channels

Radiography

view channel

Leading Cancer Center Among First in Europe to Treat Patients Using Robotic Patient-Positioning Radiotherapy Couch

A Viennese hospital has become one of the first oncology departments in Europe to introduce clinical treatments using a robotic radiotherapy patient-positioning couch. Kaiser-Franz-Josef Hospital (KFJ; Vienna, Austria) has introduced this enhanced patient positioning device, which enables more flexibility during radiotherapy... Read more

MRI

view channel
Image: The Accent MRI pacemaker and Tendril MRI lead (Photo courtesy of St. Jude Medical).

US Patent Allows Full-Body MRI Technology for Use with Pacemakers

A California hospital is first in the United States to conduct magnetic resonance imaging (MRI) of a patient implanted with a new MRI-compatible pacemaker. Cardiothoracic surgeon Raymond Schaerf, MD... Read more

Nuclear medicine

view channel
Image: Micrograph of Hodgkin lymphoma. Lymph node fine-needle aspiration (FNA) specimen. Field stain (Photo courtesy of Wikimedia Commons).

Early PET-Negative Stage I/II Hodgkin Lymphoma Patients Show Increased Risk of Early Relapse when Radiotherapy Is Not Used

Analysis of a new study indicates an increased risk of early relapse when excluding radiotherapy in early positron emission tomography (PET) scan-negative patients with stage I/II Hodgkin’s lymphoma.... Read more

General/Advanced Imaging

view channel

Secondary Light Emission Generated by Plasmonic Nanostructures May Improve Medical Imaging Technology

New clues into light emission at different wavelengths generated by elements known plasmonic nanostructures may help to improve medical imaging technology. A plasmon is a quantum of plasma oscillation. The plasmon is a quasiparticle resulting from the quantization of plasma oscillations just as photons, and phonons are... Read more

Imaging IT

view channel

Enterprise Image-Viewing System Receives FDA Clearance for Mobile Diagnosis on All Modalities

An enterprise image-viewing system is now cleared in the United States for diagnosis on mobile devices, for all imaging modalities (except mammography). Calgary Scientific, Inc. (Calgary, AB, USA) recently reported their latest Class II clearance from the US Food and Drug Administration (FDA). Calgary Scientific worked... Read more

Industry News

view channel

Collaboration Expands Capacity for Proton Therapy Clinical Research and Patient Treatments

Varian Medical Systems (Palo Alto, CA, USA) and the Paul Scherrer Institute (PSI; Villigen PSI, Switzerland) are extending an existing collaboration in the field of proton therapy to offer patients more accurate cancer treatments using intensity-modulated proton therapy (IMPT). Under the agreement, Varian will also... Read more
 
Copyright © 2000-2014 Globetech Media. All rights reserved.