We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress
Sign In
Advertise with Us
GLOBETECH PUBLISHING LLC

Download Mobile App




Ultrasound Targeted at the Brain Shown to Enhance Sensory Performance

By MedImaging International staff writers
Posted on 30 Jan 2014
Print article
Image: Dr. William Tyler, an assistant professor at the Virginia Tech Carilion Research Institute, studied the effects of ultrasound on the region of the brain responsible for processing tactile sensory inputs (Photo courtesy of James Stroup/Virginia Tech).
Image: Dr. William Tyler, an assistant professor at the Virginia Tech Carilion Research Institute, studied the effects of ultrasound on the region of the brain responsible for processing tactile sensory inputs (Photo courtesy of James Stroup/Virginia Tech).
New research has demonstrated that ultrasound can be employed to modulate brain activity to heighten sensory perception in humans, similar to how bats use ultrasound to help guide them at night.

Virginia Tech Carilion Research Institute (Roanoke, VA, USA) scientists have demonstrated that ultrasound directed to a specific region of the brain can improve performance in sensory discrimination. The study’s findings, published online January 12, 2014, in the journal Nature Neuroscience, provides the first validation that low-intensity, transcranial focused ultrasound can modulate human brain activity to raise perception.

“Ultrasound has great potential for bringing unprecedented resolution to the growing trend of mapping the human brain’s connectivity,” said Dr. William Tyler, an assistant professor at the Virginia Tech Carilion Research Institute, who led the study. “So we decided to look at the effects of ultrasound on the region of the brain responsible for processing tactile sensory inputs.”

The scientists delivered focused ultrasound to an area of the cerebral cortex that processes sensory information received from the hand. To stimulate the median nerve, they positioned a small electrode on the wrist of human volunteers and recorded their brain responses using electroencephalography (EEG). Then, right before stimulating the nerve, they began delivering ultrasound to the targeted brain region.

The investigators discovered that the ultrasound both decreased the EEG signal and weakened the brain waves responsible for encoding tactile stimulation. The scientists then administered two classic neurologic tests: the two-point discrimination test, which gauges an individual’s ability to distinguish whether two close by objects touching the skin are truly two distinct points, instead of one; and the frequency discrimination task, a test that measures sensitivity to the frequency of a chain of air puffs.

What the scientists found was unanticipated. The study participants receiving ultrasound showed substantial improvements in their capability to differentiate pins at closer distances and to single out small frequency differences between successive air puffs. “Our observations surprised us,” said Dr. Tyler. “Even though the brain waves associated with the tactile stimulation had weakened, people actually got better at detecting differences in sensations.”

The researchers wanted to know why would brain response suppression to sensory stimulation heighten perception, and Dr. Tyler theorized that the ultrasound affected an important neurologic balance. “It seems paradoxical, but we suspect that the particular ultrasound waveform we used in the study alters the balance of synaptic inhibition and excitation between neighboring neurons within the cerebral cortex,” Dr. Tyler said. “We believe focused ultrasound changed the balance of ongoing excitation and inhibition processing sensory stimuli in the brain region targeted and that this shift prevented the spatial spread of excitation in response to stimuli resulting in a functional improvement in perception.”

To determine how well they could isolate the effect, the researchers moved the acoustic beam 1 cm in either direction of the original site of brain stimulation, and the effect disappeared. “That means we can use ultrasound to target an area of the brain as small as the size of an M&M [a popular US candy about 1 cm in diameter],” Dr. Tyler said. “This finding represents a new way of noninvasively modulating human brain activity with a better spatial resolution than anything currently available.”

The scientists, based on the findings of the current study and an earlier one, concluded that ultrasound has a greater spatial resolution than two other leading noninvasive brain stimulation technologies—transcranial magnetic stimulation, which uses magnets to activate the brain, and transcranial direct current stimulation, which uses slight electrical currents delivered directly to the brain through electrodes positioned on the head.

"Gaining a better understanding of how pulsed ultrasound affects the balance of synaptic inhibition and excitation in targeted brain regions, as well as how it influences the activity of local circuits versus long-range connections, will help us make more precise maps of the richly interconnected synaptic circuits in the human brain,” said Wynn Legon, the study’s first author and a postdoctoral scholar at the Virginia Tech Carilion Research Institute. “We hope to continue to extend the capabilities of ultrasound for noninvasively tweaking brain circuits to help us understand how the human brain works.”

“The work by Jamie Tyler and his colleagues is at the forefront of the coming tsunami of developing new, safe, yet effective noninvasive ways to modulate the flow of information in cellular circuits within the living human brain,” said Dr. Michael Friedlander, executive director of the Virginia Tech Carilion Research Institute and a neuroscientist who specializes in brain plasticity. “This approach is providing the technology and proof of principle for precise activation of neural circuits for a range of important uses, including potential treatments for neurodegenerative disorders, psychiatric diseases, and behavioral disorders. Moreover, it arms the neuroscientific community with a powerful new tool to explore the function of the healthy human brain, helping us understand cognition, decision-making, and thought. This is just the type of breakthrough called for in President Obama’s BRAIN [Brain Research through Advancing Innovative Neurotechnologies, also referred to as the Brain Activity Map Project] Initiative to enable dramatic new approaches for exploring the functional circuitry of the living human brain and for treating Alzheimer’s disease and other disorders.”

“In neuroscience, it’s easy to disrupt things,” concluded Dr. Tyler. “We can distract you, make you feel numb, trick you with optical illusions. It’s easy to make things worse, but it’s hard to make them better. These findings make us believe we’re on the right path.”

Related Links:
Virginia Tech Carilion Research Institute

Gold Member
Solid State Kv/Dose Multi-Sensor
AGMS-DM+
New
Color Doppler Ultrasound System
KC20
Portable Radiology System
DRAGON ELITE & CLASSIC
C-Arm with FPD
Digiscan V20 / V30

Print article
Radcal

Channels

MRI

view channel
Image: PET/MRI can accurately classify prostate cancer patients (Photo courtesy of 123RF)

PET/MRI Improves Diagnostic Accuracy for Prostate Cancer Patients

The Prostate Imaging Reporting and Data System (PI-RADS) is a five-point scale to assess potential prostate cancer in MR images. PI-RADS category 3 which offers an unclear suggestion of clinically significant... Read more

Nuclear Medicine

view channel
Image: The new SPECT/CT technique demonstrated impressive biomarker identification (Journal of Nuclear Medicine: doi.org/10.2967/jnumed.123.267189)

New SPECT/CT Technique Could Change Imaging Practices and Increase Patient Access

The development of lead-212 (212Pb)-PSMA–based targeted alpha therapy (TAT) is garnering significant interest in treating patients with metastatic castration-resistant prostate cancer. The imaging of 212Pb,... Read more

General/Advanced Imaging

view channel
Image: The Tyche machine-learning model could help capture crucial information. (Photo courtesy of 123RF)

New AI Method Captures Uncertainty in Medical Images

In the field of biomedicine, segmentation is the process of annotating pixels from an important structure in medical images, such as organs or cells. Artificial Intelligence (AI) models are utilized to... Read more

Imaging IT

view channel
Image: The new Medical Imaging Suite makes healthcare imaging data more accessible, interoperable and useful (Photo courtesy of Google Cloud)

New Google Cloud Medical Imaging Suite Makes Imaging Healthcare Data More Accessible

Medical imaging is a critical tool used to diagnose patients, and there are billions of medical images scanned globally each year. Imaging data accounts for about 90% of all healthcare data1 and, until... Read more
Copyright © 2000-2024 Globetech Media. All rights reserved.