Features | Partner Sites | Information | LinkXpress
Sign In
SCHILLER AG
TERARECON, INC.
AMPRONIX

MR-Guided Ultrasound Offers Effective Noninvasive Treatment for Breast Cancer

By Medimaging International staff writers
Posted on 16 Dec 2013
Image: PRE: Pretreatment transverse MR image obtained with perfusion technique shows an enhancing lesion of 1.2 cm (circled) in the upper quadrants of the right breast; the lesion shows with irregular margin and appears color-coded in red due to the washout pattern (malignancy). POST: Same MR image technique obtained post-treatment (10 days): Absence of enhancement was seen at perfusion color-coded image after noninvasive thermal ablation with MR-guided high-intensity focused ultrasound; the black hole stands for necrosis nicely demonstrating also the absence of residual tumor (Photo courtesy of RSNA).
Image: PRE: Pretreatment transverse MR image obtained with perfusion technique shows an enhancing lesion of 1.2 cm (circled) in the upper quadrants of the right breast; the lesion shows with irregular margin and appears color-coded in red due to the washout pattern (malignancy). POST: Same MR image technique obtained post-treatment (10 days): Absence of enhancement was seen at perfusion color-coded image after noninvasive thermal ablation with MR-guided high-intensity focused ultrasound; the black hole stands for necrosis nicely demonstrating also the absence of residual tumor (Photo courtesy of RSNA).
A technique that utilizes focused ultrasound under magnetic resonance imaging (MRI) guidance to heat and destroy tumors may offer a safe and effective treatment for breast cancer.

The new findings were presented according to research being presented today at the annual meeting of the Radiological Society of North America (RSNA), held in December 1-6, 2013, in Chicago (IL, USA). MR-guided focused ultrasound (MRgFUS) ablation is a noninvasive technique that requires no incision or puncture to perform. Instead, it uses the acoustic energy from high-intensity focused ultrasound to ablate diseased tissue. Continuous MRI scanning is employed to locate the lesions and monitor the temperature change during the ablation process.

The primary advantages of MRgFUS over other breast cancer treatments are that it is a noninvasive, outpatient procedure offering a quick recovery time, and that it provides precise measurement of temperature alterations during the procedure. “In the treatment stage, we are able to precisely visualize where the energy is having an effect and to measure exactly the rise in temperature,” said Alessandro Napoli, MD, PhD, assistant professor of radiology at Sapienza University (Rome, Italy). “Temperature monitoring is particularly important since too low a temperature is ineffective and too high a temperature may be dangerous.”

Dr. Napoli and colleagues evaluated the safety and efficacy of MRgFUS in 12 patients with invasive ductal breast cancer before surgical removal of the cancer and biopsy of the lymph nodes. They used 3T MRI to validate the presence and treatable location of cancerous lesions. The patients then underwent single-session MRgFUS treatment. Researchers evaluated treatment efficacy through postsurgery pathology.

None of the patients experienced significant complications during or immediately after the procedure. In 10 of the 12 patients, MRI scans revealed no enhancement in the treatment area after the procedure. Postsurgery histological evaluation confirmed the absence of residual disease in the treatment area in those 10 patients. “This procedure allows for safe ablation of breast cancer,” Dr. Napoli said. “At pathology, no significant viable tumor was found in the specimens from these 10 patients.”

In the other two instances, treatment failed due to transducer malfunction, and the pathologist observed residual tumor in the samples.

According to Dr. Napoli, MRI guidance is crucial for correct identification of lesions, treatment planning and real-time control during the procedure. Specifically, tracking with MRI allows for efficient deposit of energy into the region of treatment at the correct range of between 60 °C and 70 °C. “This is carried out by a special sequence that is called MR thermometry,” Dr. Napoli said. “Only MRI presently has the ability to determine, in real time, fine temperature quantification.”

Even though these preliminary findings are promising, Dr. Napoli noted that more studies would be needed before the approach can be adopted as a stand-alone treatment for breast cancer.

Related Links:

Sapienza University



RTI ELECTRONICS AB
RADCAL
SuperSonic Imagine

Channels

Radiography

view channel

Leading Cancer Center Among First in Europe to Treat Patients Using Robotic Patient-Positioning Radiotherapy Couch

A Viennese hospital has become one of the first oncology departments in Europe to introduce clinical treatments using a robotic radiotherapy patient-positioning couch. Kaiser-Franz-Josef Hospital (KFJ; Vienna, Austria) has introduced this enhanced patient positioning device, which enables more flexibility during radiotherapy... Read more

MRI

view channel
Image: The Accent MRI pacemaker and Tendril MRI lead (Photo courtesy of St. Jude Medical).

US Patent Allows Full-Body MRI Technology for Use with Pacemakers

A California hospital is first in the United States to conduct magnetic resonance imaging (MRI) of a patient implanted with a new MRI-compatible pacemaker. Cardiothoracic surgeon Raymond Schaerf, MD... Read more

Nuclear medicine

view channel
Image: Micrograph of Hodgkin lymphoma. Lymph node fine-needle aspiration (FNA) specimen. Field stain (Photo courtesy of Wikimedia Commons).

Early PET-Negative Stage I/II Hodgkin Lymphoma Patients Show Increased Risk of Early Relapse when Radiotherapy Is Not Used

Analysis of a new study indicates an increased risk of early relapse when excluding radiotherapy in early positron emission tomography (PET) scan-negative patients with stage I/II Hodgkin’s lymphoma.... Read more

General/Advanced Imaging

view channel

Secondary Light Emission Generated by Plasmonic Nanostructures May Improve Medical Imaging Technology

New clues into light emission at different wavelengths generated by elements known plasmonic nanostructures may help to improve medical imaging technology. A plasmon is a quantum of plasma oscillation. The plasmon is a quasiparticle resulting from the quantization of plasma oscillations just as photons, and phonons are... Read more

Imaging IT

view channel

Enterprise Image-Viewing System Receives FDA Clearance for Mobile Diagnosis on All Modalities

An enterprise image-viewing system is now cleared in the United States for diagnosis on mobile devices, for all imaging modalities (except mammography). Calgary Scientific, Inc. (Calgary, AB, USA) recently reported their latest Class II clearance from the US Food and Drug Administration (FDA). Calgary Scientific worked... Read more

Industry News

view channel

Collaboration Expands Capacity for Proton Therapy Clinical Research and Patient Treatments

Varian Medical Systems (Palo Alto, CA, USA) and the Paul Scherrer Institute (PSI; Villigen PSI, Switzerland) are extending an existing collaboration in the field of proton therapy to offer patients more accurate cancer treatments using intensity-modulated proton therapy (IMPT). Under the agreement, Varian will also... Read more
 
Copyright © 2000-2014 Globetech Media. All rights reserved.