Features | Partner Sites | Information | LinkXpress
Sign In
Schiller
GLOBETECH PUBLISHING LLC
Ampronix

New Ultrasound Applications Detects Early Response to Pancreatic Cancer Therapy

By Medimaging International staff writers
Posted on 06 Mar 2013
Image: 3-D Ultrasound Molecular Imaging (USMI) images of nonresponder and responder pancreatic xenografts before (day 0) and after (day 2) treatment. The grayscale image shows a volume of the tumor and surrounding tissue. The green region is the molecular signal (Photo courtesy of the University of North Carolina).
Image: 3-D Ultrasound Molecular Imaging (USMI) images of nonresponder and responder pancreatic xenografts before (day 0) and after (day 2) treatment. The grayscale image shows a volume of the tumor and surrounding tissue. The green region is the molecular signal (Photo courtesy of the University of North Carolina).
In a recent study, investigators utilized dynamic contrast enhanced-perfusion imaging (DCE-PI) and ultrasonic molecular imaging (USMI) to gauge response to therapy for pancreatic cancer.

The research was published in the January 2013 issue journal Technology in Cancer Research and Treatment. Paul Dayton, PhD, University of North Carolina (UNC) Lineberger Comprehensive Cancer Center (Chapel Hill, USA), and senior author of the study, said, “What we found is that using two noninvasive technologies, we can detect response to therapy earlier than by relying on tumor volume changes. Having new noninvasive, inexpensive technologies available to measure response to therapy earlier during the course of treatment would be a significant advance in the ability to tailor a person’s treatment to improve outcomes.”

Dr. Dayton, a UNC associate professor of biomedical engineering, worked with Jen Jen Yeh, M.D, an associate professor of surgery and pharmacology, to assess the imaging technologies on human pancreatic cancer in a preclinical model. Both investigators are members of the Lineberger Comprehensive Cancer Center.

USMI has the ability to depict noninvasively the biologic processes at the cellular and molecular levels. It accomplishes this with the use of targeted contrast agents, which are markers that bind to specific proteins expressed on cancer cells within the body. These contrast agents enable a conventional ultrasound system to identify signals from cancer cells that would otherwise be undetectable.

Ultrasound DCE-PI is a technique used noninvasively to track the blood flow in the microcirculation. Because growing tumors require abnormally increased blood flow, alterations in blood vessel structure or density can provide data regarding tumor malignancy. The researchers employed a drug that suppresses a protein specific to tumors. They then used the imaging applications to gauge the response of two different tumors, one known to respond to the drug therapy, and a second known not to respond. The findings indicated that USMI was able to detect molecular signs of tumor response to therapy after only two days.

A change in blood flow in the tumor was seen to detect response after day 14 using DCE-PI. Over the same period, standard volume measurements were not able to detect therapeutic response, and prior studies suggested that volume measurements do not become indicative of response until approximately 28 days. Therefore, these modalities revealed a substantial improvement in the early identification of tumor response to therapy, using contrast enhanced ultrasound imaging.

The contrast agents for USMI currently in clinical trials in Europe for cancer imaging, however, they are not yet available in the United States.

Related Links:
University of North Carolina Lineberger Comprehensive Cancer Center



PCI Precision Charts
Supersonic Imagine
ARAB HEALTH

Channels

Radiography

view channel
Image: This shows a 3D print model used in surgical planning (Photo courtyes of RSNA).

3D Printing and CT Imaging Used to Guide Human Face Transplants

Surgeons are using computed tomography (CT) imaging and three-dimensional (3-D) printing technology to reconstruct life-size models of patients’ heads to help better control the outcome in face transplantation... Read more

MRI

view channel
Image: Head impact telemetry system (HITs) helmet-mounted accelerometers are used in youth and collegiate football to evaluate the frequency and severity of helmet impacts (Photo courtesy of RSNA).

DTI-MRI Shows Brain Alterations in High School Football Players After Only One Season

Some high school football players exhibit measurable brain alterations after only one season of play, even in the absence of concussion. The new findings were presented at the annual meeting of the... Read more

General/Advanced Imaging

view channel
Image: The DermSpectra total body digital skin imaging system (Photo courtesy of DermSpectra).

Total Body Digital Skin Imaging System Developed for Dermatology and Primary Care Practices

A total body digital skin imaging system enables physicians to track critical skin changes (skin cancers, eczema, lesions, psoriasis, and rashes) in their office, over time. The DermSpectra (Tucson,... Read more

Imaging IT

view channel

New Healthcare IT Products and Medical Imaging Systems Revealed

A wide range of new advanced information management systems and diagnostic image products aimed at improving hospital workflows and efficiency, and patient outcomes, have been revealed by a major healthcare Information Technology (IT) provider at Radiological Society of North America (RSNA 2014). The new IT offerings... Read more

Industry News

view channel

New Report Forecasts Strong Growth for Diagnostic Imaging Equipment in BRIC Countries

A new report released by MarketsandMarkets (Dallas, TX, USA) forecasts that the diagnostic imaging equipment market in Brazil, Russia, China, and India (BRIC) is expected to grow at a Compound Annual Growth Rate (CAGR) of 10.5% in the seven years between 2011 and 2018. The report covers the following diagnostic imaging... Read more
 
Copyright © 2000-2014 Globetech Media. All rights reserved.