Features | Partner Sites | Information | LinkXpress
Sign In
ElsMed
Schiller
Agfa Healthcare

New Ultrasound Applications Detects Early Response to Pancreatic Cancer Therapy

By Medimaging International staff writers
Posted on 06 Mar 2013
Image: 3-D Ultrasound Molecular Imaging (USMI) images of nonresponder and responder pancreatic xenografts before (day 0) and after (day 2) treatment. The grayscale image shows a volume of the tumor and surrounding tissue. The green region is the molecular signal (Photo courtesy of the University of North Carolina).
Image: 3-D Ultrasound Molecular Imaging (USMI) images of nonresponder and responder pancreatic xenografts before (day 0) and after (day 2) treatment. The grayscale image shows a volume of the tumor and surrounding tissue. The green region is the molecular signal (Photo courtesy of the University of North Carolina).
In a recent study, investigators utilized dynamic contrast enhanced-perfusion imaging (DCE-PI) and ultrasonic molecular imaging (USMI) to gauge response to therapy for pancreatic cancer.

The research was published in the January 2013 issue journal Technology in Cancer Research and Treatment. Paul Dayton, PhD, University of North Carolina (UNC) Lineberger Comprehensive Cancer Center (Chapel Hill, USA), and senior author of the study, said, “What we found is that using two noninvasive technologies, we can detect response to therapy earlier than by relying on tumor volume changes. Having new noninvasive, inexpensive technologies available to measure response to therapy earlier during the course of treatment would be a significant advance in the ability to tailor a person’s treatment to improve outcomes.”

Dr. Dayton, a UNC associate professor of biomedical engineering, worked with Jen Jen Yeh, M.D, an associate professor of surgery and pharmacology, to assess the imaging technologies on human pancreatic cancer in a preclinical model. Both investigators are members of the Lineberger Comprehensive Cancer Center.

USMI has the ability to depict noninvasively the biologic processes at the cellular and molecular levels. It accomplishes this with the use of targeted contrast agents, which are markers that bind to specific proteins expressed on cancer cells within the body. These contrast agents enable a conventional ultrasound system to identify signals from cancer cells that would otherwise be undetectable.

Ultrasound DCE-PI is a technique used noninvasively to track the blood flow in the microcirculation. Because growing tumors require abnormally increased blood flow, alterations in blood vessel structure or density can provide data regarding tumor malignancy. The researchers employed a drug that suppresses a protein specific to tumors. They then used the imaging applications to gauge the response of two different tumors, one known to respond to the drug therapy, and a second known not to respond. The findings indicated that USMI was able to detect molecular signs of tumor response to therapy after only two days.

A change in blood flow in the tumor was seen to detect response after day 14 using DCE-PI. Over the same period, standard volume measurements were not able to detect therapeutic response, and prior studies suggested that volume measurements do not become indicative of response until approximately 28 days. Therefore, these modalities revealed a substantial improvement in the early identification of tumor response to therapy, using contrast enhanced ultrasound imaging.

The contrast agents for USMI currently in clinical trials in Europe for cancer imaging, however, they are not yet available in the United States.

Related Links:
University of North Carolina Lineberger Comprehensive Cancer Center



Channels

Radiography

view channel
Image: Changing CT scanners shape in response to patient waistlines. The CT imaging systems of today have up to 300 kg table weight allowance, 2 x 120 kW power, and an 80-cm bore (Photo courtesy of Siemens Healthcare).

Changing the Shape of CT Scanners in Response to Patient’s Expanding Waistlines

As computed tomography (CT) imaging systems continue to grow in size, weight capacity and ability to adapt for the growing waistline of patient population is essential. A recent evaluation, performed... Read more

MRI

view channel
Image: Amyloid plaques showing up in retinal scan as fluorescent spots as curcumin binds to them (Photo courtesy of CSIRO).

Retinal Imaging Detects Changes Associated with Alzheimer's Disease

A noninvasive optical imaging device can provide early detection of changes that later occur in the brain and are a classic sign of Alzheimer's disease (AD), according to a new study. Researchers at... Read more

Nuclear medicine

view channel
Image: PET scans highlight the loss of dopamine storage capacity in Parkinson’s disease. In the scan of a disease-free brain, made with [18F]-FDOPA PET (left image), the red and yellow areas show the dopamine concentration in a normal putamen, a part of the mid-brain. Compared with that scan, a similar scan of a Parkinson’s patient (right image) shows a marked dopamine deficiency in the putamen (Photo courtesy of the Feinstein Institute’s Center for Neurosciences).

Identifying Brain Networks Using Metabolic Brain Imaging-Based Mapping Strategy

A new image-based strategy has been used to identify and gauge placebo effects in randomized clinical trials for brain disorders. The researchers employed a network mapping technique to identify specific... Read more

General/Advanced Imaging

view channel

Diagnostic Imaging Tests Ordered by General Practitioners in Australia Nearly Double in 10 Years

A 45% increase in diagnostic imaging tests ordered by Australian general practitioners (GPs) is being fueled by increasing GP visits, an escalating number of problems managed at doctor visits, and a higher probability that GPs order imaging tests for these problems, according to a new study. Based on a long-term national... Read more

Imaging IT

view channel

IT Technology Unifies Images, Data, and Reporting Workflows Throughout Hospital Enterprise

A new integrated information technology (IT) system will unify images, data, and reporting workflows across all imaging departments in a hospital. The technology will allow hospitals to expand towards the latest, advanced imaging technology platform. Az Groeninge Hospital (Kortrijk, Belgium) has chosen to replace its... Read more

Industry News

view channel

Hosting and Distribution Collaboration Established to Provide Radiation Dose Monitoring

PHS Technologies Group, LLC (Scottsdale, AZ, USA), a unit of PACSHealth, LLC, and a developer of software that monitors patient exposure to ionizing radiation, reported that Dell Healthcare and Life Sciences (Round Rock, TX, USA) will become a marketing, distribution, and hosting partner for its DoseMonitor OnLine software.... Read more
 
Copyright © 2000-2014 Globetech Media. All rights reserved.