Features | Partner Sites | Information | LinkXpress
Sign In
TERARECON, INC.
AMPRONIX
SCHILLER AG

New Ultrasound Applications Detects Early Response to Pancreatic Cancer Therapy

By Medimaging International staff writers
Posted on 06 Mar 2013
Image: 3-D Ultrasound Molecular Imaging (USMI) images of nonresponder and responder pancreatic xenografts before (day 0) and after (day 2) treatment. The grayscale image shows a volume of the tumor and surrounding tissue. The green region is the molecular signal (Photo courtesy of the University of North Carolina).
Image: 3-D Ultrasound Molecular Imaging (USMI) images of nonresponder and responder pancreatic xenografts before (day 0) and after (day 2) treatment. The grayscale image shows a volume of the tumor and surrounding tissue. The green region is the molecular signal (Photo courtesy of the University of North Carolina).
In a recent study, investigators utilized dynamic contrast enhanced-perfusion imaging (DCE-PI) and ultrasonic molecular imaging (USMI) to gauge response to therapy for pancreatic cancer.

The research was published in the January 2013 issue journal Technology in Cancer Research and Treatment. Paul Dayton, PhD, University of North Carolina (UNC) Lineberger Comprehensive Cancer Center (Chapel Hill, USA), and senior author of the study, said, “What we found is that using two noninvasive technologies, we can detect response to therapy earlier than by relying on tumor volume changes. Having new noninvasive, inexpensive technologies available to measure response to therapy earlier during the course of treatment would be a significant advance in the ability to tailor a person’s treatment to improve outcomes.”

Dr. Dayton, a UNC associate professor of biomedical engineering, worked with Jen Jen Yeh, M.D, an associate professor of surgery and pharmacology, to assess the imaging technologies on human pancreatic cancer in a preclinical model. Both investigators are members of the Lineberger Comprehensive Cancer Center.

USMI has the ability to depict noninvasively the biologic processes at the cellular and molecular levels. It accomplishes this with the use of targeted contrast agents, which are markers that bind to specific proteins expressed on cancer cells within the body. These contrast agents enable a conventional ultrasound system to identify signals from cancer cells that would otherwise be undetectable.

Ultrasound DCE-PI is a technique used noninvasively to track the blood flow in the microcirculation. Because growing tumors require abnormally increased blood flow, alterations in blood vessel structure or density can provide data regarding tumor malignancy. The researchers employed a drug that suppresses a protein specific to tumors. They then used the imaging applications to gauge the response of two different tumors, one known to respond to the drug therapy, and a second known not to respond. The findings indicated that USMI was able to detect molecular signs of tumor response to therapy after only two days.

A change in blood flow in the tumor was seen to detect response after day 14 using DCE-PI. Over the same period, standard volume measurements were not able to detect therapeutic response, and prior studies suggested that volume measurements do not become indicative of response until approximately 28 days. Therefore, these modalities revealed a substantial improvement in the early identification of tumor response to therapy, using contrast enhanced ultrasound imaging.

The contrast agents for USMI currently in clinical trials in Europe for cancer imaging, however, they are not yet available in the United States.

Related Links:
University of North Carolina Lineberger Comprehensive Cancer Center



RTI ELECTRONICS AB
SuperSonic Imagine
RADCAL

Channels

MRI

view channel
Image: The quantitative character of the novel 3D technique on MR scans from a patient with primary liver cancer is demonstrated. Images A and B show the scan of the patient before being treated with chemoembolization. The new 3D technique helped quantify the volume and distribution of viable tumor tissue (shown in red and yellow colors). Images C and D demonstrate MR scans acquired after the treatment. The new 3D method helped the radiologists to quantify the vast central destruction of the tumor after the treatment (the dead tumor is represented by the blue color) (Photo courtesy of Johns Hopkins Medicine).

3D MRI Offers Improved Prediction of Survival After Chemotherapy for Liver Tumors

Researchers are using specialized three-dimensional (3D) magnetic resonance imaging (MRI) scanning technology to accurately measure living and dying liver tumor tissue in order to quickly show whether... Read more

Nuclear medicine

view channel
Image: Sagittal section of brain PET image at four hours after 64CuCl2 injection with disulfiram or D-penicillamine in MD model mice (Photo courtesy of the RIKEN Center for Life Science Technologies).

PET Imaging Used to Assess Effectiveness of Menkes Disease Treatments

Japanese scientists are using positron emission tomography (PET) imaging to visualize the distribution of copper in the body using lab mice. Copper distribution is deregulated in a genetic disorder called... Read more

General/Advanced Imaging

view channel

Secondary Light Emission Generated by Plasmonic Nanostructures May Improve Medical Imaging Technology

New clues into light emission at different wavelengths generated by elements known plasmonic nanostructures may help to improve medical imaging technology. A plasmon is a quantum of plasma oscillation. The plasmon is a quasiparticle resulting from the quantization of plasma oscillations just as photons, and phonons are... Read more

Imaging IT

view channel

Software Designed for the Assessment of Orthopedic Implant Fixation and Bone Segment Motion

Model-based roentgen stereophotogrammetric analysis (MBRSA) software has been developed for evaluation of orthopedic implant fixation and bone segment motion. The software is the first to measure the in vivo three-dimensional (3D) position and/or relative motion of metal implants, markers beads, and/or bone segments in... Read more

Industry News

view channel

Collaboration Expands Capacity for Proton Therapy Clinical Research and Patient Treatments

Varian Medical Systems (Palo Alto, CA, USA) and the Paul Scherrer Institute (PSI; Villigen PSI, Switzerland) are extending an existing collaboration in the field of proton therapy to offer patients more accurate cancer treatments using intensity-modulated proton therapy (IMPT). Under the agreement, Varian will also... Read more
 
Copyright © 2000-2014 Globetech Media. All rights reserved.