Features | Partner Sites | Information | LinkXpress
Sign In
Schiller
Ampronix
ElsMed

Neuronal Cytoskeleton and Cytomechanics Shown to Be Altered by Cranial Radiotherapy at a Specific Dose

By Medimaging International staff writers
Posted on 07 Aug 2014
Image: Under the atomic force microscope, the cytoskeletal protein structures became fuzzy or even collapsed after X-ray irradiation (Photo courtesy of Neural Regeneration Research journal).
Image: Under the atomic force microscope, the cytoskeletal protein structures became fuzzy or even collapsed after X-ray irradiation (Photo courtesy of Neural Regeneration Research journal).
Chinese researchers have discovered that radiation-induced neuronal injury was more apparent after cranial radiation therapy.

Cranial radiotherapy is one of the most significant therapeutic strategies for the treatment of various types of primary and metastatic brain tumors. Although traditional photon irradiation has significantly enhances the treatment of cancer, the central nervous system is prone to damage after high-dose irradiation, resulting in severe delayed or progressive nervous tissue injury.

The issues regarding brain radiation injury have been widely discussed, and recent studies have emphasized changes in pathomorphology. However, the underlying mechanism remains elusive, according to the invesigators, from the School of Stomatology, Lanzhou University (Lanzhou, Gansu Province, China).

Under atomic force microscopy, the neuronal membrane appeared rough and neuronal rigidity had increased. The depolymerization, misfolding, or denaturation of microtubule-associated proteins might contribute to the destruction of the nutrient transport channel within cells after radiation injury. Moreover, some hidden apoptosis-related genes are released through the regulation of several signals, thereby activating apoptosis and inducing acute radiation injury.

These research data also revealed that X-rays generated much more sever radiation injury to cortical neurons than a heavy ion beam, suggesting that the heavy ion beam has a biologic advantage over X-rays. This could provide a hypothetic foundation for effectively improving the protection of normal brain tissue in future cranial radiotherapy, according to the scientists.

This article was published June 1, 2014, in the journal Neural Regeneration Research.

Related Links:

Lanzhou University



Channels

MRI

view channel
Image: T1, T2 and T2 myocardial tissue quantification in one solution, on the fly. Based on HeartFreeze Inline Motion Correction (Siemens unique), MyoMaps1 provides pixel-based myocardial quantification. Global, diffuse, myocardial pathologies can be better detected (T1 Map), or better depict cardiac edema (T2 Map) and improve early detection of iron overload (T2 Map) (Photo courtesy of Siemens Healthcare).

New Cardiology Imaging Tools Include MRI Myocardial Tissue Quantification Tool and to Help Fight Cardiovascular Diseases

New imaging tools have been designed for a more precise diagnosis of cardiovascular diseases using computed tomography (CT), magnetic resonance imaging (MRI), and molecular imaging, as well as utilizing... Read more

Ultrasound

view channel
Image: The Acuson SC2000 Prime Edition ultrasound system offers live full-volume color Doppler imaging of heart valve anatomy and blood flow using a new true volume transesophageal echo (TEE) probe. With this technology, physicians can obtain a more anatomically authentic view of the heart and dynamic blood flow in one view during interventional valve procedures, even in patients with ECG abnormalities (Photo courtesy of Siemens Healthcare).

Ultrasound Technology Visualizes Entire Blood Flow During Valve Procedures

A new cardiovascular imaging system provides live, full-volume color Doppler ultrasound imaging of heart valve anatomy and blood flow using a new true volume, three-dimensional (3D) transesophageal echo (TEE) probe.... Read more

Nuclear medicine

view channel

PET Imaging Reveals Brain Benefits from Weight Loss After Bariatric Surgery

Imaging studies revealed that weight loss surgery has been found to suppress changes in brain metabolism associated with obesity and improve cognitive function involved in planning, strategizing, and organizing. Therefore, researchers have hypothesized that a specific surgical procedure could reduce risk of Alzheimer’s... Read more

General/Advanced Imaging

view channel
Image: From left, Guy Genin, PhD, John Boyle and Stavros Thomopoulos, PhD, watch as a sample is exposed to stress and force. They have developed algorithms that may lead to the ability to identify weak spots in tendons, muscles and bones (Photo courtesy of Washington University in St. Louis).

Image Analysis Algorithms Devised to Find Weak Spots in Muscles, Tendons, and Bones prone to Tearing, Breaking

Researchers have developed algorithms to detect weak spots in muscles, tendons, and bones predisposed to tearing or breaking. The technology, which needs to be further refined before it is used in patients,... Read more

Imaging IT

view channel
Image: An X-ray using the ClearRead bone suppression software technology (Photo courtesy of Riverain Technologies).

Bone Suppression Software Used to Optimize Diagnostic Capability of X-Ray Systems

Clinicians are gathering important information from the most routine imaging exam, the chest X-ray, by using advanced software that enhances X-ray images captured by the equipment they already have or... Read more

Industry News

view channel

USD 12 Billion Out of Total Spent on Medical Imaging Squandered in the US

The United States wastes close to USD 12 billion on unnecessary medical imaging yearly, according to a new survey of 196 hospital leaders. Smart data company peer60 (American Fork, UT, USA) surveyed 196 healthcare leaders about medical imaging in less than two weeks and found a number of reasons for the squandered resources.... Read more
 
Copyright © 2000-2014 Globetech Media. All rights reserved.