Features | Partner Sites | Information | LinkXpress
Sign In
Schiller
ElsMed
Samsung

Neuronal Cytoskeleton and Cytomechanics Shown to Be Altered by Cranial Radiotherapy at a Specific Dose

By Medimaging International staff writers
Posted on 07 Aug 2014
Image: Under the atomic force microscope, the cytoskeletal protein structures became fuzzy or even collapsed after X-ray irradiation (Photo courtesy of Neural Regeneration Research journal).
Image: Under the atomic force microscope, the cytoskeletal protein structures became fuzzy or even collapsed after X-ray irradiation (Photo courtesy of Neural Regeneration Research journal).
Chinese researchers have discovered that radiation-induced neuronal injury was more apparent after cranial radiation therapy.

Cranial radiotherapy is one of the most significant therapeutic strategies for the treatment of various types of primary and metastatic brain tumors. Although traditional photon irradiation has significantly enhances the treatment of cancer, the central nervous system is prone to damage after high-dose irradiation, resulting in severe delayed or progressive nervous tissue injury.

The issues regarding brain radiation injury have been widely discussed, and recent studies have emphasized changes in pathomorphology. However, the underlying mechanism remains elusive, according to the invesigators, from the School of Stomatology, Lanzhou University (Lanzhou, Gansu Province, China).

Under atomic force microscopy, the neuronal membrane appeared rough and neuronal rigidity had increased. The depolymerization, misfolding, or denaturation of microtubule-associated proteins might contribute to the destruction of the nutrient transport channel within cells after radiation injury. Moreover, some hidden apoptosis-related genes are released through the regulation of several signals, thereby activating apoptosis and inducing acute radiation injury.

These research data also revealed that X-rays generated much more sever radiation injury to cortical neurons than a heavy ion beam, suggesting that the heavy ion beam has a biologic advantage over X-rays. This could provide a hypothetic foundation for effectively improving the protection of normal brain tissue in future cranial radiotherapy, according to the scientists.

This article was published June 1, 2014, in the journal Neural Regeneration Research.

Related Links:

Lanzhou University



Supersonic Imagine
PHS Technologies
ARAB HEALTH

Channels

MRI

view channel
Image: Differences in the brains of autistic and control subjects using MRI (Photo courtesy of Center of Cognitive Brain Imaging, Carnegie Mellon University).

MRI Shows Brain Anatomy Differences Between Autistic and Typically Developing Individuals to Be Mostly Indistinguishable

In the largest magnetic resonance imaging (MRI) study of patients with autism to date, Israeli and American researchers have shown that the brain anatomy in MRI scans of autistic individuals older than... Read more

Nuclear medicine

view channel
Image: The MRIdian MRI-guided radiation therapy system (Photo courtesy of ViewRay).

World’s First Clinical MRI-Guided Radiation Therapy System Awarded CE Marking

The world’s first magnetic resonance imaging (MRI)-guided radiation therapy system has received CE marking approval, which will allow the developer of the technology to deliver the systems throughout Europe... Read more

General/Advanced Imaging

view channel

Photoacoustic Imaging Optimizes Visualization of Cancerous Tissues Using Time Reversal Technology

Unique time-reversal technology is being used to better focus light in tissue, such as muscles and organs. Current high-resolution optical imaging technology allows researchers to see about 1-mm-deep into the body. In an effort to enhance this imaging technology, the investigators are employing photoacoustic imaging, which... Read more

Imaging IT

view channel

Imaging Data, Tools Developed for Heart Disease Research

A virtual machine is being developed to optimize reproducibility and data availability to assess and enhance analyses of magnetic resonance imaging (MRI) myocardial perfusion data. The project was described November 11, 2014, in the open access, open data journal GigaScience. The study’s researchers, from the Universidad... Read more

Industry News

view channel
Image: Blackford Analysis accelerates image comparison (Photo courtesy of Blackford Analysis).

Partnership to Integrate Image Workflow Server into Image Viewer

Intelerad Medical Systems (Montreal, Canada), a developer of medical imaging picture archiving and communication systems (PACS), radiology information systems (RIS), and workflow solutions, reported that... Read more
 

Events

01 Dec 2014 - 05 Dec 2014
11 Jan 2015 - 14 Jan 2015
Copyright © 2000-2014 Globetech Media. All rights reserved.