Features | Partner Sites | Information | LinkXpress
Sign In
GLOBETECH PUBLISHING LLC
TeraRecon
Schiller

PET-CT Identifies Ruptured and High-Risk Coronary Plaque

By Medimaging International staff writers
Posted on 09 Jan 2014
Image: The Biograph mCT PET-CT system by Siemens Healthcare (Photo courtesy of Siemens Healthcare).
Image: The Biograph mCT PET-CT system by Siemens Healthcare (Photo courtesy of Siemens Healthcare).
Scientists have discovered that the tracer 18F-sodium fluoride (18F-NaF) used with positron emission tomography-computed tomography (PET-CT) imaging technology is the first noninvasive imaging modality to identify and localize ruptured and high-risk coronary plaque.

The University of Edinburgh (Scotland, UK) is leading the heart disease study with the help of a Biograph mCT PET-CT system developed by Siemens Healthcare (Erlangen, Germany). The new study’s findings were published October 2013 in the Lancet. Currently there is no noninvasive way of finding high-risk plaques at risk of rupturing and causing a heart attack. The imaging technology is providing new clues into clinical research into early diagnosis of the disorder.

In the prospective clinical trial, patients with myocardial infarction and stable angina underwent 18F-NaF and 18F-fluorodeoxyglucose (18F-FDG) PET-CT and invasive coronary angiography. 18F-NaF uptake was compared with histology in carotid endarterectomy specimens from patients with symptomatic carotid disease, and with intravascular ultrasound in patients with stable angina. The primary endpoint was the comparison of 18F-fluoride tissue-to-background ratios of culprit and non-culprit coronary plaques of patients with acute myocardial infarction.

In 93% (37) of patients with myocardial infarction, the highest coronary 18F-NaF uptake was seen in the culprit plaque. By contrast, coronary 18F-fluorodeoxyglucose (FDG) uptake was typically concealed by myocardial uptake and where discernible, there were no differences between culprit and non-culprit plaques. Marked 18F-NaF uptake occurred at the site of all carotid plaque ruptures and was linked with histologic evidence of active calcification, macrophage infiltration, apoptosis, and necrosis. Forty-five percent (18) of patients with stable angina had plaques with focal 18F-NaF uptake that were associated with more high-risk features on intravascular ultrasound than those without uptake.

The plaque areas in the blood vessels were easily identifiable by using the Biograph mCT scanner. In the patients with angina, advanced notice that they had high-risk plaques and a heart attack may be impending. These patients could then be targeted with aggressive therapy to avoid future events.

“Being able to identify dangerous fatty plaques likely to cause a heart attack is something that conventional heart tests can’t do. This research suggests that PET-CT scanning may provide an answer, identifying ‘ticking time bomb’ patients at risk of a heart attack,” said Prof. Peter Weissberg, medical director at the British Heart Foundation (BHF; London, UK). “Nearly 20 years of BHF-funded research has led us to this point. We now need to confirm these findings, and then understand how best to use new tests like this in the clinic to benefit heart patients.”

BHF clinical lecturer and cardiologist Dr. Marc Dweck, who led the research at the University of Edinburgh, stated: “We have developed what we hope is a way to ‘light up’ plaques on the brink of rupturing and causing a heart attack. If we could know how close a person is to having a heart attack, we could step in with medication or surgery before the damage is done. This is a first step towards that goal. The next stage is to confirm these findings in larger studies to establish first that this technique can truly predict heart attacks and secondly that treatment can help patients avoid these events.”

“Siemens Healthcare is delighted that the Biograph mCT is aiding ground-breaking research into the UK’s biggest killer—heart disease,” remarked Lawrence Foulsham, business manager, molecular imaging at Siemens Healthcare. “The condition is a clinical priority for the UK; therefore advancements in this field are incredibly important. We have a long-standing partnership with the Clinical Research Imaging Center at the University of Edinburgh and look forward to assisting them with further clinical research insights into the future.”

The Clinical Research Imaging Center at the University of Edinburgh installed the Biograph mCT in 2010.

Related Links:

Siemens Healthcare
University of Edinburgh



Channels

MRI

view channel

New MRI Procedure Can Accurately Classify or Rule Out Suspected Prostate Carcinoma

A novel noninvasive Magnetic Resonance Imaging (MRI) method has been developed to detect or rule out prostate carcinomas. The method, known as multi-parametric prostate MRI, enables physicians to probe prostate tissue cellular density, and anatomical features, and is the most reliable procedure currently available for... Read more

Nuclear medicine

view channel

Construction of Australian Nuclear Medicine Production Plant Begins

The new facility is being built as part of the Australian Nuclear Science and Technology Organisation (ANSTO; NSW, Australia) Nuclear Medicine (ANM) project, and includes an investment of USD 168.8 by the Australian government. The ANM project also includes the construction of a Synroc plant for treatment of radioactive... Read more

General/Advanced Imaging

view channel
Image: Measuring the Magnetic Activity in the Brain of a Child, Using a MEG machine. (Photo courtesy of Children\'s Hospital of Philadelphia).

Study Suggests Language Delay Linked to Chromosome Deletion in Children with Neurological Disorders

A study found that children with neuro-developmental problems born with DNA duplications or deletions on part of chromosome 16, show measurable delays in their ability to process sound and language.... Read more

Imaging IT

view channel

Cancer Detection Improved with New Image Analysis Technique

Researchers developed a novel image-analysis technique designed to improve breast cancer detection and diagnosis. The goal of the team was to develop a new quantitative image analysis technique to improve prediction of cancer risk, or cancer prognosis, and help find more effective cancer screening and treatment strategies.... Read more

Industry News

view channel
Image: Toshiba's new medical imaging systems plant in Penang, Malaysia (Photo courtesy of Toshiba).

Toshiba Medical Builds Manufacturing Facility in Southeast Asia

A manufacturing facility built in Bayan Lepas (Penang, Malaysia) by Toshiba Medical Systems Corporation (Otawara, Japan) will produce diagnostic imaging systems. The new 8,582-m2 facility cost JPY 1.... Read more
 

Events

05 Mar 2015 - 08 Mar 2015
Copyright © 2000-2015 Globetech Media. All rights reserved.