We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress
Sign In
Advertise with Us
GLOBETECH PUBLISHING LLC

Download Mobile App




New Approach to Study the Development of Alzheimer's Disease

By MedImaging International staff writers
Posted on 18 Jan 2015
Print article
Scientists described a new technique to study β-amyloid deposits in vivo in a mouse model.

Researchers at the Werner Siemens Imaging Center (Tuebingen, Germany) have published a report in the December 2014 issue of Nature Medicine in which they describe a new technique to study how proteinaceous deposits (β-amyloid plaques) form and develop in the brains of laboratory mice. The plaques are similar to those that form in human Alzheimer's disease.

The technique used two noninvasive imaging technologies, Magnetic Resonance Imaging (MRI) and Positron Emission Tomography (PET) to produce images of the brains of live mice, and quantify the dynamics of Alzheimer development both temporally and spatially. The researchers found that reduced blood flow in the brain was directly linked to the formation of β-amyloid plaques in cerebral blood vessels, not to plaques that formed only in the brain tissue. The researchers noted that this technique could be used to help distinguish between Alzheimer's dementia from other types of dementia.

Dr. Bernd Pichler, from the Werner Siemens Imaging Center concluded that the research would help improve diagnosis and treatment of Alzheimer's, and commented, "It would make sense to develop new treatment strategies which reduce or prevent plaque formation." The lead author of the study, PhD student Florian Maier, concluded, “Our data show that the amyloid plaque build-up in the cerebral vessels is the main factor behind the disruption of blood flow.”

Related Links:

Werner Siemens Imaging Center 


Gold Member
Solid State Kv/Dose Multi-Sensor
AGMS-DM+
Under Table Shield
3 Section Double Pivot Under Table Shield
Compact C-Arm with FPD
Arcovis DRF-C R21
Ultrasound Software
UltraExtend NX

Print article
Radcal

Channels

Nuclear Medicine

view channel
Image: The new SPECT/CT technique demonstrated impressive biomarker identification (Journal of Nuclear Medicine: doi.org/10.2967/jnumed.123.267189)

New SPECT/CT Technique Could Change Imaging Practices and Increase Patient Access

The development of lead-212 (212Pb)-PSMA–based targeted alpha therapy (TAT) is garnering significant interest in treating patients with metastatic castration-resistant prostate cancer. The imaging of 212Pb,... Read more

General/Advanced Imaging

view channel
Image: The Tyche machine-learning model could help capture crucial information. (Photo courtesy of 123RF)

New AI Method Captures Uncertainty in Medical Images

In the field of biomedicine, segmentation is the process of annotating pixels from an important structure in medical images, such as organs or cells. Artificial Intelligence (AI) models are utilized to... Read more

Imaging IT

view channel
Image: The new Medical Imaging Suite makes healthcare imaging data more accessible, interoperable and useful (Photo courtesy of Google Cloud)

New Google Cloud Medical Imaging Suite Makes Imaging Healthcare Data More Accessible

Medical imaging is a critical tool used to diagnose patients, and there are billions of medical images scanned globally each year. Imaging data accounts for about 90% of all healthcare data1 and, until... Read more
Copyright © 2000-2024 Globetech Media. All rights reserved.