Features | Partner Sites | Information | LinkXpress
Sign In
Schiller
ElsMed
Ampronix

Identifying Brain Networks Using Metabolic Brain Imaging-Based Mapping Strategy

By Medimaging International staff writers
Posted on 31 Jul 2014
Image: PET scans highlight the loss of dopamine storage capacity in Parkinson’s disease. In the scan of a disease-free brain, made with [18F]-FDOPA PET (left image), the red and yellow areas show the dopamine concentration in a normal putamen, a part of the mid-brain. Compared with that scan, a similar scan of a Parkinson’s patient (right image) shows a marked dopamine deficiency in the putamen (Photo courtesy of the Feinstein Institute’s Center for Neurosciences).
Image: PET scans highlight the loss of dopamine storage capacity in Parkinson’s disease. In the scan of a disease-free brain, made with [18F]-FDOPA PET (left image), the red and yellow areas show the dopamine concentration in a normal putamen, a part of the mid-brain. Compared with that scan, a similar scan of a Parkinson’s patient (right image) shows a marked dopamine deficiency in the putamen (Photo courtesy of the Feinstein Institute’s Center for Neurosciences).
A new image-based strategy has been used to identify and gauge placebo effects in randomized clinical trials for brain disorders. The researchers employed a network mapping technique to identify specific brain circuits underlying the response to sham surgery in Parkinson’s disease (PD).

The study’s findings were published in the July 18, 2014, in the Journal of Clinical Investigation. PD is the second most common neurodegenerative disease in the United States. Those who suffer from Parkinson’s disease most frequently experience tremors, slowness of movement (bradykinesia), rigidity, and impaired balance and coordination. Patients may have a hard time talking, walking, or completing simple daily tasks. They may also experience depression and difficulty sleeping due to the disease. The current standard for diagnosis of PD disease relies on a skilled healthcare professional, typically an experienced neurologist, to determine through clinical examination that someone has it. Currently, there is no cure for PD, but drugs can improve symptoms.

Investigators from the Feinstein Institute’s Center for Neurosciences (Manhasset, NY, USA), led by David Eidelberg, MD, has developed a strategy to identify brain patterns that are abnormal or indicate disease using 18-F flurorodeoxyglucose (FDG) positron emission tomography (PET) metabolic imaging techniques. Up to now, this approach has been used effectively to identify specific networks in the brain that indicate a patient has or is at risk for PD and other neurodegenerative disorders.

“One of the major challenges in developing new treatments for neurodegenerative disorders such as Parkinson’s disease is that it is common for patients participating in clinical trials to experience a placebo or sham effect,” noted Dr. Eidelberg. “When patients involved in a clinical trial commonly experience benefits from placebo, it’s difficult for researchers to identify if the treatment being studied is effective. In a new study conducted by my colleagues and myself, we have used a new image-based strategy to identify and measure placebo effects in brain disorder clinical trials.”

The researchers used their network mapping technique in this study to identify specific brain circuits underlying the response to sham surgery in PD patients participating in a gene therapy trial. The expression of this network measured under blinded conditions correlated with the sham study participants’ clinical outcome; the network changes were reversed when the subjects learned of their sham treatment status.

Lastly, an individual’s network expression value measured before the treatment predicted his/her subsequent blinded response to sham treatment. This suggests, according to the investigators, that this innovative image-based measure of the sham-related network can help to reduce the number of subjects assigned to sham treatment in randomized clinical trials for brain disorders by excluding those patients who are more liable to display placebo effects under blinded conditions.

Related Links:

Feinstein Institute’s Center for Neurosciences



Channels

Radiography

view channel
Image: The AeroDR Premium is an extremely light cassette-type digital radiography detector with improved strength (Photo courtesy of Konica Minolta).

Cassette-Type Digital Radiography Detector Designed to Reduce Waiting Times

Key features of a new cassette-type digital radiography (DR) system includes an extremely light weight of 2.6 kg; improved load resistance and drop impact resistance; and reduced waiting time due to shortened... Read more

MRI

view channel
Image: MagLab’s 900 MHz magnet (Photo courtesy of FSU – Florida State University).

High Magnetic Field MRI Technology Provides Comprehensive Analysis of Strokes

A new, novel way to categorize the severity of a stroke, help in diagnosis, and assesse potential treatments has been demonstrated by US researchers. “Stroke affects millions of adults and children... Read more

Ultrasound

view channel
Image: Purdue University researchers are using ultrasound images like this one to study abdominal aortic aneurysms, a potentially fatal condition that is the 13th leading cause of death in the United States (Photo courtesy of Purdue University/Weldon School of Biomedical Engineering).

Ultrasound Provides Insights into Abdominal Aortic Aneurysms

Researchers are assessing the effectiveness of the use of ultrasound to study lethal abdominal aortic aneurysms (AAAs), a bulging of the aorta that is typically fatal when it ruptures, and for which there... Read more

General/Advanced Imaging

view channel
Image: A collaborative effort between EPFL, CNRS, ENS Lyon, CPE Lyon, and ETH Zürich has led to the development of a novel approach that can considerably improve the capabilities of medical imaging with safer procedures for the patient (Photo courtesy of EPFL - Ecole Polytechnique Fédérale de Lausanne).

Collaboration to Make Diagnostic Medical Imaging Less Hazardous Using Hyperpolarization Agents

A collaborative effort by scientists has led to the development of an innovative strategy that can considerably improve the capabilities of medical imaging with safer procedures for the patient.... Read more

Imaging IT

view channel
Image: The Coronis Uniti diagnostic image display supports PACS and breast imaging in color and grayscale (Photo courtesy of Barco).

Diagnostic Image Display Designed for Both PACS and Breast Imaging

The first diagnostic display designed for both picture archiving and communication systems (PACS) and breast imaging provides excellent image quality, inventive productivity features, and a focus on ergonomics.... Read more

Industry News

view channel

Global Partnership Provides Treatment Planning Support for Modulated Arc Radiotherapy

Varian Medical Systems (Palo Alto, CA, USA) Eclipse treatment planning software can now be used to plan modulated arc radiotherapy (mARC) treatments at sites using Siemens Healthcare (Erlangen, Germany) medical linear accelerators. Varian Medical Systems and Siemens Healthcare presented their range of solutions that... Read more
 
Copyright © 2000-2014 Globetech Media. All rights reserved.