Features | Partner Sites | Information | LinkXpress
Sign In
Schiller
GLOBETECH PUBLISHING LLC
Ampronix

Identifying Brain Networks Using Metabolic Brain Imaging-Based Mapping Strategy

By Medimaging International staff writers
Posted on 31 Jul 2014
Image: PET scans highlight the loss of dopamine storage capacity in Parkinson’s disease. In the scan of a disease-free brain, made with [18F]-FDOPA PET (left image), the red and yellow areas show the dopamine concentration in a normal putamen, a part of the mid-brain. Compared with that scan, a similar scan of a Parkinson’s patient (right image) shows a marked dopamine deficiency in the putamen (Photo courtesy of the Feinstein Institute’s Center for Neurosciences).
Image: PET scans highlight the loss of dopamine storage capacity in Parkinson’s disease. In the scan of a disease-free brain, made with [18F]-FDOPA PET (left image), the red and yellow areas show the dopamine concentration in a normal putamen, a part of the mid-brain. Compared with that scan, a similar scan of a Parkinson’s patient (right image) shows a marked dopamine deficiency in the putamen (Photo courtesy of the Feinstein Institute’s Center for Neurosciences).
A new image-based strategy has been used to identify and gauge placebo effects in randomized clinical trials for brain disorders. The researchers employed a network mapping technique to identify specific brain circuits underlying the response to sham surgery in Parkinson’s disease (PD).

The study’s findings were published in the July 18, 2014, in the Journal of Clinical Investigation. PD is the second most common neurodegenerative disease in the United States. Those who suffer from Parkinson’s disease most frequently experience tremors, slowness of movement (bradykinesia), rigidity, and impaired balance and coordination. Patients may have a hard time talking, walking, or completing simple daily tasks. They may also experience depression and difficulty sleeping due to the disease. The current standard for diagnosis of PD disease relies on a skilled healthcare professional, typically an experienced neurologist, to determine through clinical examination that someone has it. Currently, there is no cure for PD, but drugs can improve symptoms.

Investigators from the Feinstein Institute’s Center for Neurosciences (Manhasset, NY, USA), led by David Eidelberg, MD, has developed a strategy to identify brain patterns that are abnormal or indicate disease using 18-F flurorodeoxyglucose (FDG) positron emission tomography (PET) metabolic imaging techniques. Up to now, this approach has been used effectively to identify specific networks in the brain that indicate a patient has or is at risk for PD and other neurodegenerative disorders.

“One of the major challenges in developing new treatments for neurodegenerative disorders such as Parkinson’s disease is that it is common for patients participating in clinical trials to experience a placebo or sham effect,” noted Dr. Eidelberg. “When patients involved in a clinical trial commonly experience benefits from placebo, it’s difficult for researchers to identify if the treatment being studied is effective. In a new study conducted by my colleagues and myself, we have used a new image-based strategy to identify and measure placebo effects in brain disorder clinical trials.”

The researchers used their network mapping technique in this study to identify specific brain circuits underlying the response to sham surgery in PD patients participating in a gene therapy trial. The expression of this network measured under blinded conditions correlated with the sham study participants’ clinical outcome; the network changes were reversed when the subjects learned of their sham treatment status.

Lastly, an individual’s network expression value measured before the treatment predicted his/her subsequent blinded response to sham treatment. This suggests, according to the investigators, that this innovative image-based measure of the sham-related network can help to reduce the number of subjects assigned to sham treatment in randomized clinical trials for brain disorders by excluding those patients who are more liable to display placebo effects under blinded conditions.

Related Links:

Feinstein Institute’s Center for Neurosciences



Channels

Radiography

view channel
Image: Bayalpata Hospital in Rural Nepal (Photo courtesy of Nyaya Health Blog).

Base of the Pyramid Digital Imaging System Built for Novel Telemedicine Applications

The remote Bayalpata Hospital in the mountains of Western Nepal has set up a system that will allow their physicians to digitize and send X-ray images to physicians in Grande hospital in Kathmandu for... Read more

MRI

view channel
Image: Using an MRI technique that is sensitive to certain byproducts of cell metabolism, including levels of glucose and acidity, University of Iowa researchers discovered previously unrecognized differences in the brains of patients with bipolar disorder. The T1rho MRI scans showed brain regions of elevated signal in the 15 participants with bipolar disorder compared to the 25 participants who did not have bipolar disorder. The primary regions of difference are the cerebral white matter (yellow) and the cerebellum (red) (Photo courtesy of the University of Iowa).

Quantitative, High-Resolution T1 Rho MRI Mapping Scan Reveals Brain Differences in Bipolar Disorder

Using a different sort of magnetic resonance imaging (MRI) technology, researchers have discovered previously unrecognized differences in the brains of patients with bipolar disorder. In particular, the... Read more

Ultrasound

view channel

Guidelines Released for Quantitative Monitoring of Critically Ill and Surgery Patients Using Echocardiography

The American Society of Echocardiography (ASE; Morrisville, NC, USA) has published clinical guidelines describing how and when echocardiography can be used for medical and surgical therapy in adult patients. The guidelines were published in the January 2015 issue of the American Society of Echocardiography.... Read more

General/Advanced Imaging

view channel
Image: Dr. Miles was part of the team that helped identify facial measurements in children with autism that may lead to a screening tool for young children and provide clues to its genetic causes (Photo courtesy of Rebecca F. Miller).

Advanced 3D Facial Imaging Designed to Help in Early Identification of Autism

Autism is a range of closely related disorders observed in patients who exhibit a shared assortment of symptoms, including delays in learning to communicate and interrelate socially. Early detection of... Read more

Imaging IT

view channel

Findings Reveal Health Information Exchange Decreases Repeat Imaging

The use of health information exchange (HIE) systems to share reports on imaging tests, such as X-rays and magnetic resonance imaging (MRI) scans, can help reduce the number of times patients undergo the precisely same test. A new study suggests that HIE technology that gives healthcare providers immediate, electronic access... Read more

Industry News

view channel
Image: 3-D Image of the Mindray DC-70 Ultrsound System (Photo courtesy of Mindray).

Ultrasound Equipment Sector in United States Expected to Grow Through 2020

Ultrasound equipment market in the United States is expected to remain stable and continue to grow, exceeding USD 2 billion by 2020 as revealed in a report by iData Research (Burnaby, BC, Canada).... Read more
 

Events

01 Feb 2015 - 06 Feb 2015
02 Feb 2015 - 06 Feb 2015
Copyright © 2000-2015 Globetech Media. All rights reserved.