Features | Partner Sites | Information | LinkXpress
Sign In
Ampronix
ElsMed
Schiller

Molecular Imaging Tracers Help Determine Brain Metastases Treatment Strategies

By Medimaging International staff writers
Posted on 17 Dec 2013
Imaging with the molecular imaging tracer 18F-FDOPA (L-3,4-dihydroxy-6-[18F]fluoro-phenylalanine) can help differentiate radiation-induced lesions from new tumor growth in patients who have been treated with radiotherapy for brain metastases, according to new research.

Using this amino acid tracer, researchers discovered that physicians could effectively differentiate the two types of lesions 83% of the time. Progression-free survival could also be predicted through evaluating the 18F-FDOPA imaging findings.

Brain metastases occur in 20%–40% of all cancer patients, especially in those with melanoma, non-small-cell lung cancer, and breast cancer. They account for 170,000 new cases yearly in the United States alone, and prognosis is poor. Treatment for brain metastases usually includes a combination of surgery, radiation treatment, and chemotherapy.

“Histopathological changes in neural tissue treated with radiation could trigger clinical and imaging manifestations which are very similar to those caused by tumor growth,” said Karlo J. Lizarraga, MD, MS, from the department of neurology, Miller School of Medicine, University of Miami (FL, USA), and lead author of the study. “The challenge is then to differentiate whether these manifestations are due to radiation or to tumor progression or recurrence. Accurate and timely distinction between these two possibilities can significantly affect patient care, and outcome for treatment modalities are completely different for each case.”

In the retrospective study, published ahead of print October 28, 2013, and slated for the January 1, 2014, issue of the Journal of Nuclear Medicine, researchers analyzed images from 32 patients who had 83 earlier irradiated brain metastases and who underwent 18F-FDOPA positron emission tomography (PET). The studies were analyzed both semi-quantitatively and visually to determine whether lesions were caused by radiation injury or were recurrent or progressive brain metastases. Results were verified by histopathologic analysis or clinical follow-up. The prognostic ability of 18F-FDOPA in predicting progression-free survival and overall survival was also studied with the Kaplan-Meier and Cox regression techniques.

The best overall accuracy for differentiating between the two types of lesions was achieved using visual scoring, which had a sensitivity of 81.3%, a specificity of 84.3%, and an overall accuracy of 83.1%. The semi-quantitative analysis resulted in a sensitivity of 81.3%, a specificity of 72.5% and an overall accuracy of 75.9%.

Researchers also discovered that evaluations with 18F-FDOPA PET was highly prognostic of progression-free survival, as lesions with a negative PET result had a mean time to progression that was 4.6 times longer than lesions with positive 18F-FDOPA PET findings. Moreover, a trend toward predicting overall survival was also seen.

18F-FDOPA PET imaging is currently available in few centers. The longer physical half-life of 18F-FDOPA, when compared to other amino acid tracers, gives it the advantage of potential automated production and transport to PET centers for widespread use,” noted Dr. Lizarraga.

Related Links:

Miller School of Medicine, University of Miami



Channels

Radiography

view channel
Image: Scanora 3Dx cone-beam CT system (Photo courtesy of Sorodex).

3D Cone Beam CT System Designed for ENT, Oral Surgeons

A cone beam, three-dimensional (3D) computed tomography (CT) imaging system has been developed for modern multispecialty practices to help ear/nose/throat (ENT) and dentomaxillofacial surgeons to make... Read more

MRI

view channel
Image: T1, T2 and T2 myocardial tissue quantification in one solution, on the fly. Based on HeartFreeze Inline Motion Correction (Siemens unique), MyoMaps1 provides pixel-based myocardial quantification. Global, diffuse, myocardial pathologies can be better detected (T1 Map), or better depict cardiac edema (T2 Map) and improve early detection of iron overload (T2 Map) (Photo courtesy of Siemens Healthcare).

New Cardiology Imaging Tools Include MRI Myocardial Tissue Quantification Tool and to Help Fight Cardiovascular Diseases

New imaging tools have been designed for a more precise diagnosis of cardiovascular diseases using computed tomography (CT), magnetic resonance imaging (MRI), and molecular imaging, as well as utilizing... Read more

Ultrasound

view channel
Image: The Acuson SC2000 Prime Edition ultrasound system offers live full-volume color Doppler imaging of heart valve anatomy and blood flow using a new true volume transesophageal echo (TEE) probe. With this technology, physicians can obtain a more anatomically authentic view of the heart and dynamic blood flow in one view during interventional valve procedures, even in patients with ECG abnormalities (Photo courtesy of Siemens Healthcare).

Ultrasound Technology Visualizes Entire Blood Flow During Valve Procedures

A new cardiovascular imaging system provides live, full-volume color Doppler ultrasound imaging of heart valve anatomy and blood flow using a new true volume, three-dimensional (3D) transesophageal echo (TEE) probe.... Read more

General/Advanced Imaging

view channel
Image: From left, Guy Genin, PhD, John Boyle and Stavros Thomopoulos, PhD, watch as a sample is exposed to stress and force. They have developed algorithms that may lead to the ability to identify weak spots in tendons, muscles and bones (Photo courtesy of Washington University in St. Louis).

Image Analysis Algorithms Devised to Find Weak Spots in Muscles, Tendons, and Bones prone to Tearing, Breaking

Researchers have developed algorithms to detect weak spots in muscles, tendons, and bones predisposed to tearing or breaking. The technology, which needs to be further refined before it is used in patients,... Read more

Imaging IT

view channel
Image: An X-ray using the ClearRead bone suppression software technology (Photo courtesy of Riverain Technologies).

Bone Suppression Software Used to Optimize Diagnostic Capability of X-Ray Systems

Clinicians are gathering important information from the most routine imaging exam, the chest X-ray, by using advanced software that enhances X-ray images captured by the equipment they already have or... Read more

Industry News

view channel

USD 12 Billion Out of Total Spent on Medical Imaging Squandered in the US

The United States wastes close to USD 12 billion on unnecessary medical imaging yearly, according to a new survey of 196 hospital leaders. Smart data company peer60 (American Fork, UT, USA) surveyed 196 healthcare leaders about medical imaging in less than two weeks and found a number of reasons for the squandered resources.... Read more
 
Copyright © 2000-2014 Globetech Media. All rights reserved.