We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress
Sign In
Advertise with Us
GLOBETECH PUBLISHING LLC

Download Mobile App




Molecular Imaging Tracers Help Determine Brain Metastases Treatment Strategies

By MedImaging International staff writers
Posted on 17 Dec 2013
Print article
Imaging with the molecular imaging tracer 18F-FDOPA (L-3,4-dihydroxy-6-[18F]fluoro-phenylalanine) can help differentiate radiation-induced lesions from new tumor growth in patients who have been treated with radiotherapy for brain metastases, according to new research.

Using this amino acid tracer, researchers discovered that physicians could effectively differentiate the two types of lesions 83% of the time. Progression-free survival could also be predicted through evaluating the 18F-FDOPA imaging findings.

Brain metastases occur in 20%–40% of all cancer patients, especially in those with melanoma, non-small-cell lung cancer, and breast cancer. They account for 170,000 new cases yearly in the United States alone, and prognosis is poor. Treatment for brain metastases usually includes a combination of surgery, radiation treatment, and chemotherapy.

“Histopathological changes in neural tissue treated with radiation could trigger clinical and imaging manifestations which are very similar to those caused by tumor growth,” said Karlo J. Lizarraga, MD, MS, from the department of neurology, Miller School of Medicine, University of Miami (FL, USA), and lead author of the study. “The challenge is then to differentiate whether these manifestations are due to radiation or to tumor progression or recurrence. Accurate and timely distinction between these two possibilities can significantly affect patient care, and outcome for treatment modalities are completely different for each case.”

In the retrospective study, published ahead of print October 28, 2013, and slated for the January 1, 2014, issue of the Journal of Nuclear Medicine, researchers analyzed images from 32 patients who had 83 earlier irradiated brain metastases and who underwent 18F-FDOPA positron emission tomography (PET). The studies were analyzed both semi-quantitatively and visually to determine whether lesions were caused by radiation injury or were recurrent or progressive brain metastases. Results were verified by histopathologic analysis or clinical follow-up. The prognostic ability of 18F-FDOPA in predicting progression-free survival and overall survival was also studied with the Kaplan-Meier and Cox regression techniques.

The best overall accuracy for differentiating between the two types of lesions was achieved using visual scoring, which had a sensitivity of 81.3%, a specificity of 84.3%, and an overall accuracy of 83.1%. The semi-quantitative analysis resulted in a sensitivity of 81.3%, a specificity of 72.5% and an overall accuracy of 75.9%.

Researchers also discovered that evaluations with 18F-FDOPA PET was highly prognostic of progression-free survival, as lesions with a negative PET result had a mean time to progression that was 4.6 times longer than lesions with positive 18F-FDOPA PET findings. Moreover, a trend toward predicting overall survival was also seen.

18F-FDOPA PET imaging is currently available in few centers. The longer physical half-life of 18F-FDOPA, when compared to other amino acid tracers, gives it the advantage of potential automated production and transport to PET centers for widespread use,” noted Dr. Lizarraga.

Related Links:

Miller School of Medicine, University of Miami


Gold Member
Solid State Kv/Dose Multi-Sensor
AGMS-DM+
New
X-Ray Detector
FDR-D-EVO III
New
Wireless Handheld Ultrasound System
TE Air
New
DR Flat Panel Detector
1500L

Print article

Channels

Radiography

view channel
:	Image: The AI model could be a valuable adjunct to human radiologists in breast cancer diagnoses and risk prediction (Photo courtesy of 123RF)

AI Model Predicts 5-Year Breast Cancer Risk from Mammograms

Approximately 13% of U.S. women, or one in every eight, are predicted to develop invasive breast cancer over their lifetime, with 1 in 39 women (3%) succumbing to the illness, according to the American... Read more

General/Advanced Imaging

view channel
Image: The CIARTIC Move self-driving mobile C-arm has received FDA clearance (Photo courtesy of Siemens)

Self-Driving Mobile C-Arm Reduces Imaging Time during Surgery

Intraoperative imaging faces significant challenges due to staff shortages and the high demands placed on surgical teams in the operating room (OR). A common challenge during many OR procedures is the... Read more

Imaging IT

view channel
Image: The new Medical Imaging Suite makes healthcare imaging data more accessible, interoperable and useful (Photo courtesy of Google Cloud)

New Google Cloud Medical Imaging Suite Makes Imaging Healthcare Data More Accessible

Medical imaging is a critical tool used to diagnose patients, and there are billions of medical images scanned globally each year. Imaging data accounts for about 90% of all healthcare data1 and, until... Read more

Industry News

view channel
Image: Samsung Medison CEO Mr. Yongkwan Kim and Bracco Imaging CEO Dr. Fulvio Renoldi Bracco endorsed a MoU agreement (Photo courtesy of Bracco Group)

Samsung and Bracco Enter Into New Diagnostic Ultrasound Technology Agreement

Samsung Medison (Seoul, South Korea) and Bracco Imaging (Milan, Italy) have entered into a Memorandum of Understanding (MoU) agreement to pioneer a new area for diagnostic ultrasound devices and contrast agents.... Read more
Copyright © 2000-2024 Globetech Media. All rights reserved.