Features | Partner Sites | Information | LinkXpress
Sign In
SCHILLER AG
AMPRONIX
TERARECON, INC.

Imaging for Amyloid Deposits Also Shows Promise for Detecting Cardiac Amyloidosis

By Medimaging International staff writers
Posted on 21 Feb 2013
Whereas amyloid imaging may now be most associated with detecting plaques in the brain, it also has the potential to alter the way cardiac amyloidosis is diagnosed. According to first-of-its-kind research, positron emission tomography (PET) with 11C-PIB (Pittsburgh compound B) can effectively visualize amyloid deposits in the heart. Currently, there is no other noninvasive test available for specific diagnosis.

The study’s findings were published in the February 2013 issue of the Journal of Nuclear Medicine. Cardiac amyloidosis is a deadly disorder caused by abnormal amyloid deposits in the heart tissue. Early diagnosis before structural change to the heart tissue has occurred is important for disease prognosis and for treatment monitoring. Echocardiography is the current mainstay of imaging in cardiac amyloidosis; a cardiac biopsy is used to validate diagnosis.

“Imaging with 11C-PIB provides a noninvasive and specific means of showing distribution of amyloid in an organ. This gives a unique opportunity to follow and monitor therapy, as amyloid deposits in the heart should decrease with successful therapy,” said Gunnar Antoni, PhD, from department of medicinal chemistry, Uppsala University (Sweden), and lead author of the research.

The study included 10 patients diagnosed with cardiac amyloidosis and five healthy individuals. PET/computed tomography (CT) with 11C-PIB was used to visualize amyloid deposits in the heart and with 11C-acetate to measure myocardial blood flow.

Uptake of 11C-PIB was measured 15–25 minutes after injection. Obvious uptake of 11C-PIB was noted in the left ventricle wall of all patients with cardiac amyloidosis, while no uptake was seen in the healthy volunteers. In half of the patients, 11C-PIB was also detected in the right ventricle wall, and nine of the patients had signs of reversible uptake, with a maximum concentration at 10–15 minutes after injection. Myocardial blood flow was significantly lower in patients with cardiac amyloidosis; however, no significant correlation between myocardial blood flow and 11C-PIB uptake was found.

“This study emphasizes the strength of molecular imaging for detecting an underlying and significant molecular aberration in a disease that presents with unspecific symptoms and signs,” noted Dr. Antoni. “The potential for molecular imaging to provide valuable information for other diseases is of great value to the field of medicine.”

Related Links:
Uppsala University






RTI ELECTRONICS AB
RADCAL
SuperSonic Imagine

Channels

Radiography

view channel

Leading Cancer Center Among First in Europe to Treat Patients Using Robotic Patient-Positioning Radiotherapy Couch

A Viennese hospital has become one of the first oncology departments in Europe to introduce clinical treatments using a robotic radiotherapy patient-positioning couch. Kaiser-Franz-Josef Hospital (KFJ; Vienna, Austria) has introduced this enhanced patient positioning device, which enables more flexibility during radiotherapy... Read more

MRI

view channel

Use of Breast MRI Offers Optimized Care

Magnetic resonance imaging (MRI) is being used increasingly for breast cancer screening, diagnostic assessment, treatment planning, and monitoring; however, a recent study revealed that over time, the indication for breast MRI has changed. Much of the increase was found among women with breast cancer risk factors, but there... Read more

Ultrasound

view channel
Image: Analogic Sonic Window handheld ultrasound for peripheral IV placement (Photo courtesy of Analogic).

First-of-a-Kind Ultrasound System Designed for Image-Guided Peripheral Intravenous Access and Fits in Pocket

A new, ultra-compact ultrasound device provides direct visualization of structures beneath the skin in real time to effectively guide clinicians placing peripheral intravenous (IV) lines.... Read more

General/Advanced Imaging

view channel

Secondary Light Emission Generated by Plasmonic Nanostructures May Improve Medical Imaging Technology

New clues into light emission at different wavelengths generated by elements known plasmonic nanostructures may help to improve medical imaging technology. A plasmon is a quantum of plasma oscillation. The plasmon is a quasiparticle resulting from the quantization of plasma oscillations just as photons, and phonons are... Read more

Imaging IT

view channel

Enterprise Image-Viewing System Receives FDA Clearance for Mobile Diagnosis on All Modalities

An enterprise image-viewing system is now cleared in the United States for diagnosis on mobile devices, for all imaging modalities (except mammography). Calgary Scientific, Inc. (Calgary, AB, USA) recently reported their latest Class II clearance from the US Food and Drug Administration (FDA). Calgary Scientific worked... Read more

Industry News

view channel

Collaboration Expands Capacity for Proton Therapy Clinical Research and Patient Treatments

Varian Medical Systems (Palo Alto, CA, USA) and the Paul Scherrer Institute (PSI; Villigen PSI, Switzerland) are extending an existing collaboration in the field of proton therapy to offer patients more accurate cancer treatments using intensity-modulated proton therapy (IMPT). Under the agreement, Varian will also... Read more
 
Copyright © 2000-2014 Globetech Media. All rights reserved.