Features | Partner Sites | Information | LinkXpress
Sign In
Schiller
Ampronix
VIEWORKS

Imaging for Amyloid Deposits Also Shows Promise for Detecting Cardiac Amyloidosis

By Medimaging International staff writers
Posted on 21 Feb 2013
Whereas amyloid imaging may now be most associated with detecting plaques in the brain, it also has the potential to alter the way cardiac amyloidosis is diagnosed. According to first-of-its-kind research, positron emission tomography (PET) with 11C-PIB (Pittsburgh compound B) can effectively visualize amyloid deposits in the heart. Currently, there is no other noninvasive test available for specific diagnosis.

The study’s findings were published in the February 2013 issue of the Journal of Nuclear Medicine. Cardiac amyloidosis is a deadly disorder caused by abnormal amyloid deposits in the heart tissue. Early diagnosis before structural change to the heart tissue has occurred is important for disease prognosis and for treatment monitoring. Echocardiography is the current mainstay of imaging in cardiac amyloidosis; a cardiac biopsy is used to validate diagnosis.

“Imaging with 11C-PIB provides a noninvasive and specific means of showing distribution of amyloid in an organ. This gives a unique opportunity to follow and monitor therapy, as amyloid deposits in the heart should decrease with successful therapy,” said Gunnar Antoni, PhD, from department of medicinal chemistry, Uppsala University (Sweden), and lead author of the research.

The study included 10 patients diagnosed with cardiac amyloidosis and five healthy individuals. PET/computed tomography (CT) with 11C-PIB was used to visualize amyloid deposits in the heart and with 11C-acetate to measure myocardial blood flow.

Uptake of 11C-PIB was measured 15–25 minutes after injection. Obvious uptake of 11C-PIB was noted in the left ventricle wall of all patients with cardiac amyloidosis, while no uptake was seen in the healthy volunteers. In half of the patients, 11C-PIB was also detected in the right ventricle wall, and nine of the patients had signs of reversible uptake, with a maximum concentration at 10–15 minutes after injection. Myocardial blood flow was significantly lower in patients with cardiac amyloidosis; however, no significant correlation between myocardial blood flow and 11C-PIB uptake was found.

“This study emphasizes the strength of molecular imaging for detecting an underlying and significant molecular aberration in a disease that presents with unspecific symptoms and signs,” noted Dr. Antoni. “The potential for molecular imaging to provide valuable information for other diseases is of great value to the field of medicine.”

Related Links:
Uppsala University






Channels

Radiography

view channel

US FDA Issues Class 2 Device Recall of CT Scanners

The US Food and Drug Administration (FDA) issued a Class 2 Recall notice on April 1, 2015, for several Philips Healthcare (Best, The Netherlands) Computed Tomography (CT) scanners worldwide. According to the FDA, “Philips discovered that a software defect exists in the marketed product wherein the sign indication of... Read more

Ultrasound

view channel

Study Suggests Ultrasound Could Eliminate Breast Biopsies in Adolescent Girls

Results of a study published in the Journal of Ultrasound in Medicine in April 2015, indicate that ultrasound examinations could replace invasive excisional tissue biopsies for adolescent girls with breast lumps. The study was carried out by researchers at the Loyola University Health System (Maywood, IL, USA) and included... Read more

General/Advanced Imaging

view channel
Image: Measuring the Magnetic Activity in the Brain of a Child, Using a MEG machine. (Photo courtesy of Children\'s Hospital of Philadelphia).

Study Suggests Language Delay Linked to Chromosome Deletion in Children with Neurological Disorders

A study found that children with neuro-developmental problems born with DNA duplications or deletions on part of chromosome 16, show measurable delays in their ability to process sound and language.... Read more

Imaging IT

view channel
Image: A new imaging techniques to see how brain cancer cells (the darker gray on the bottom of the large image above) take in gold nanorod treatment (the small gray specks). The four magnified images on the right show how the cell takes up the treatment across a span of 30 seconds (Photo courtesy of VirginiaTech).

Novel Imaging Technique Visualizes Potential Cancer Treatments in Action

A new and innovative imaging technique for observing cancer treatments in brain tumor cells has been developed by researchers at the Virginia Tech Carilion Research Institute (Roanoke, VA, USA).... Read more

Industry News

view channel

Partnership to Extend Web and Mobile Image Access to Enterprise Patient Multimedia Manager

A partnership and distribution agreement has been agreed to integrate an enterprise multimedia Picture Archiving and Communication System (PACS) with an enterprise image viewing solution. The partnership will provide extended web and mobile access for clinicians to medical images and multimedia files from desktop computers,... Read more
 
Copyright © 2000-2015 Globetech Media. All rights reserved.