Features Partner Sites Information LinkXpress
Sign In
Advertise with Us
Ampronix

Gold Nanoparticles to Deliver Powerful Radioactive Particles Directly to Tumors for Treatment

By Medimaging International staff writers
Posted on 18 Feb 2013
Print article
Researchers have demonstrated the ability to harness powerful radioactive particles and target them toward small cancerous tumors while doing negligible damage to healthy organs and tissues.

The study’s findings were published in February 2012 in the journal PLOS ONE. Typically, when radiation treatment is recommended for cancer patients, doctors are able to choose from several radiopharmaceuticals that use low-energy radiation particles, known as beta particles. For quite a while, scientists have been examining how to use alpha particles, which are radioactive particles that contain a large amount of energy, in cancer treatments. The challenges to using alpha particles, which are more than 7,000 times heavier than beta particles, include confining the powerful alpha particles in a selected location inside the body while preventing radiation from wandering to healthy organs and tissues.

“If you think of beta particles as slingshots or arrows, alpha particles would be similar to cannon balls,” said J. David Robertson, director of research at the University of Missouri (MU; Columbia, USA) research reactor and professor of chemistry in the College of Arts and Science. “Scientists have had some successes using alpha particles recently, but nothing that can battle different cancers. For example, a current study using radium-223 chloride, which emits alpha particles, has been fast-tracked by the US Food and Drug Administration because it has been shown to be effective in treating bone cancer. However, it only works for bone cancer because the element, radium, is attracted to the bone and stays there. We believe we have found a solution that will allow us to target alpha particles to other cancer sites in the body in an effective manner.”

Dr. Robertson and researchers from Oak Ridge National Laboratory (Oak Ridge, TN, USA) and the School of Medicine at the University of Tennessee (Knoxville, USA) used the element actinium, which is an element known as an alpha emitter because it generates alpha particles. As it decays, actinium creates three additional elements that produce alpha particles. Because of the strength of these particles, keeping the elements positioned at cancer sites was not possible, until the investigators designed a gold-plated nanoparticle that serves as a holding cell for the elements, keeping them in place at the cancer site.

Dr. Robertson’s nanoparticle is a layered device. At the core is the original element, actinium. The researchers then added four layers of material and then coated the nanoparticle with gold. This made the nanoparticle strong enough to hold the actinium—and the other alpha emitters that are ultimately created—long enough for any alpha particles to destroy nearby cancer cells. “Holding these alpha emitters in place is a technical challenge that researchers have been trying to overcome for 15 years,” Dr. Robertson said. “With our nanoparticle design, we are able to keep more than 80% of the element inside the nanoparticle 24 hours after it is created.”

Whereas alpha particles are very powerful, they do not travel very far, so when the nanoparticles get close to cancer cells, the alpha particles move out and destroy the cell more successfully than current radiation therapy options, according to Dr. Robertson. “Previously, basic research had established that scientists can attach antibodies onto gold nanoparticles that help drive the nanoparticles to the tumor sites in the body,” Dr. Robertson said. “Without that groundbreaking work, we would not have been able to put this puzzle together.”

The preliminary results of this research are promising. If additional studies are successful within the next few years, MU officials will request authority from the federal government to begin human drug development (referred to as the investigative new drug [IND] status). After this status has been granted, researchers may conduct human clinical trials with the potential of developing new cancer therapies.

Related Links:
University of Missouri



Print article
Radcal

Channels

Radiography

view channel
Image: The CAD platform is available on the Aspire Cristalle digital mammography system (Photo courtesy of Fujifilm).

CAD Solution Available on New Digital Mammography System

An industry-leading provider of cancer detection, radiation therapy, and workflow solutions, has announced that the company's mammography CAD solution is now available on a new advanced Full Field Digital... Read more

General/Advanced Imaging

view channel

Early Intervention with Stent Retrievers Improves Outcomes for Ischemic Stroke Patients

New research has shown that restoration of blood flow to the brain within two and a half hours from the onset of the first signs of acute ischemic stroke resulted in none, or only minimal disability in 91% of patients. Endovascular therapy in the early stages of the onset of stroke symptoms significantly improved functional... Read more

Imaging IT

view channel

World Medical VR Technology Company Unveils First-of-Its-Kind Neurosurgery Surgical Visualization Platform

A novel neurosurgery Virtual Reality (VR) visualization platform has been demonstrated at the NVIDIA GPU Technology Conference (GTC) 2016 in California (USA). The enterprise-wide solution is intended to help clinicians plan, prepare, and perform neurosurgery, and enable the surgeon to empower and engage their patients... Read more

Industry News

view channel
Image: Mazor Robotics\' Renaissance Image Guidance Robot in the Hand of a Surgeon (Photo courtesy of Mazor Robotics).

Medical Image Guidance Systems Developer Reports Demand for Systems in Q1 2016

The developer of an innovative guidance system that can improve the accuracy and clinical outcomes for spine and brain surgery procedures, has announced demand for its systems during the first quarter of 2016.... Read more
Copyright © 2000-2016 Globetech Media. All rights reserved.