Features | Partner Sites | Information | LinkXpress
Sign In
GLOBETECH PUBLISHING LLC
Ampronix
Schiller

Gold Nanoparticles to Deliver Powerful Radioactive Particles Directly to Tumors for Treatment

By Medimaging International staff writers
Posted on 18 Feb 2013
Researchers have demonstrated the ability to harness powerful radioactive particles and target them toward small cancerous tumors while doing negligible damage to healthy organs and tissues.

The study’s findings were published in February 2012 in the journal PLOS ONE. Typically, when radiation treatment is recommended for cancer patients, doctors are able to choose from several radiopharmaceuticals that use low-energy radiation particles, known as beta particles. For quite a while, scientists have been examining how to use alpha particles, which are radioactive particles that contain a large amount of energy, in cancer treatments. The challenges to using alpha particles, which are more than 7,000 times heavier than beta particles, include confining the powerful alpha particles in a selected location inside the body while preventing radiation from wandering to healthy organs and tissues.

“If you think of beta particles as slingshots or arrows, alpha particles would be similar to cannon balls,” said J. David Robertson, director of research at the University of Missouri (MU; Columbia, USA) research reactor and professor of chemistry in the College of Arts and Science. “Scientists have had some successes using alpha particles recently, but nothing that can battle different cancers. For example, a current study using radium-223 chloride, which emits alpha particles, has been fast-tracked by the US Food and Drug Administration because it has been shown to be effective in treating bone cancer. However, it only works for bone cancer because the element, radium, is attracted to the bone and stays there. We believe we have found a solution that will allow us to target alpha particles to other cancer sites in the body in an effective manner.”

Dr. Robertson and researchers from Oak Ridge National Laboratory (Oak Ridge, TN, USA) and the School of Medicine at the University of Tennessee (Knoxville, USA) used the element actinium, which is an element known as an alpha emitter because it generates alpha particles. As it decays, actinium creates three additional elements that produce alpha particles. Because of the strength of these particles, keeping the elements positioned at cancer sites was not possible, until the investigators designed a gold-plated nanoparticle that serves as a holding cell for the elements, keeping them in place at the cancer site.

Dr. Robertson’s nanoparticle is a layered device. At the core is the original element, actinium. The researchers then added four layers of material and then coated the nanoparticle with gold. This made the nanoparticle strong enough to hold the actinium—and the other alpha emitters that are ultimately created—long enough for any alpha particles to destroy nearby cancer cells. “Holding these alpha emitters in place is a technical challenge that researchers have been trying to overcome for 15 years,” Dr. Robertson said. “With our nanoparticle design, we are able to keep more than 80% of the element inside the nanoparticle 24 hours after it is created.”

Whereas alpha particles are very powerful, they do not travel very far, so when the nanoparticles get close to cancer cells, the alpha particles move out and destroy the cell more successfully than current radiation therapy options, according to Dr. Robertson. “Previously, basic research had established that scientists can attach antibodies onto gold nanoparticles that help drive the nanoparticles to the tumor sites in the body,” Dr. Robertson said. “Without that groundbreaking work, we would not have been able to put this puzzle together.”

The preliminary results of this research are promising. If additional studies are successful within the next few years, MU officials will request authority from the federal government to begin human drug development (referred to as the investigative new drug [IND] status). After this status has been granted, researchers may conduct human clinical trials with the potential of developing new cancer therapies.

Related Links:
University of Missouri



Channels

Radiography

view channel

Pioneer in Orthopedic Imaging to Provide Novel Online 3-D Modeling Service for Hospitals

A company that pioneered 2-D/3-D orthopedic medical imaging has announced a new personalized 3-D image modeling service using stereo-radiographic patient images, for hospitals and healthcare professionals worldwide. The service will be able to generate 3-D models, and related clinical data, to support therapeutic decision... Read more

MRI

view channel
Image: MR Solutions Conversion Kit for MRI Scanner (Photo courtesy of MR Solutions).

Conversion Kit Transforms Clinical MRI System into a Preclinical Scanner

A clinical Magnetic Resonance Imaging (MRI) scanner can now be transformed into an effective preclinical system using a simple conversion kit. The transformation can be carried out in approximately... Read more

Ultrasound

view channel
Image: World’s first 29 MHz micro-ultrasound system (Photo courtesy of Exact Imaging).

Breakthrough High-Resolution Micro-Ultrasound Platform for the Prostate Revealed at AUA 2015

A novel micro-ultrasound imaging platform has been introduced at the annual meeting of the American Urological Association (AUA) 2015 (New Orleans, LA, USA). The probe operates at 29 MHz, and enables... Read more

General/Advanced Imaging

view channel

Global Healthcare Study of Coronary Artery Disease Reaches Significant Milestone

A major milestone has been reached in the Lipid-Rich Plaque (LRP) study, a prospective, multicenter clinical trial with the potential to reveal breakthrough correlations between Lipid-Rich Plaques and occurrence of heart attacks. The LPR study has now enrolled 1,000 patients, and aims to identify a correlation between... Read more

Imaging IT

view channel
Image: Carestream Vue Motion Viewer (Photo courtesy of Carestream Healthcare).

New Software Solution Facilitates Secure Data Aggregation from Existing Hospital IT Systems

A medical imaging systems and Information Technology (IT) solutions provider has demonstrated how its advanced healthcare IT software solutions can facilitate high-quality imaging access, and improved... Read more

Industry News

view channel

Advanced Medical Imaging Startup Company Receives Venture Funding

Zebra Medical Vision (Kibbutz Shfayim, Israel) has received an USD 8 million investment from Khosla Ventures (Menlo Park, CA, USA) to double its team, set up headquarters in the US and increase its scope of work to integrate data from additional Health Maintenance Organizations (HMO). Zebra Medical has already partnered... Read more
 
Copyright © 2000-2015 Globetech Media. All rights reserved.