We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress
Sign In
Advertise with Us
GLOBETECH PUBLISHING LLC

Download Mobile App




Fast Neutrons Help Produce Medical Isotopes

By MedImaging International staff writers
Posted on 21 Jun 2015
Print article
Image: Chemist Amanda Youker purifying molybdenum-99 (Photo courtesy of Wes Agresta/ ANL).
Image: Chemist Amanda Youker purifying molybdenum-99 (Photo courtesy of Wes Agresta/ ANL).
An innovative process is being used to create a stable commercial source of molybdenum radioisotopes, widely used in diagnostic imaging.

Developed by researchers at Argonne National Laboratory (ANL; Lemont, IL, USA), in cooperation with SHINE Medical Technologies (Monona, WI, USA) the process uses fast neutrons to bombard an aqueous solution of low enriched uranium (LEU), creating fission products that include molybdenum-99 (Mo-99), the parent isotope of technetium-99m (Tc-99m), a radioactive tracer element used in more than 40 million medical diagnostic procedures each year in the United States alone.

The isotope is created when Mo-99 spontaneously decays through the release of a beta particle from its nucleus. Because of its unstable nature, Mo-99 does not occur naturally and is traditionally produced using highly enriched uranium (HEU) in nuclear reactors. Mo-99 is also not produced in the United States, leaving the country to rely on isotope supply from international sources, including a Canadian research reactor that will cease regular production next year, which will reduce the global supply.

The SHINE process is easier to implement, since it involves the bombardment of a LEU uranyl sulfate solution with fast neutrons generated on-site in the ANL linear accelerator. The LEU breaks down after bombardment into hundreds of different isotopes, including Mo-99, which is the result of six percent of the fissions created during the process. The Mo-99 must then be separated from the other fission products before it can be transported for use.

“The development of techniques for domestic production of Mo-99 is a critical national priority and one fully supported by our work at Argonne,” said George Vandegrift, PhD, an ANL distinguished fellow who leads the Mo-99 development efforts. “Millions of patients each year rely on Mo-99 for life-saving diagnostic procedures, but the stability and safety of that supply is threatened by a variety of factors.”

Tc-99m is used in about 85% of all medical imaging procedures worldwide. It is currently made in reactors in Canada, the Netherlands, Belgium, France, Australia, and South Africa.

Related Links:

Argonne National Laboratory
SHINE Medical Technologies


Gold Member
Solid State Kv/Dose Multi-Sensor
AGMS-DM+
New
X-Ray Detector
FDR-D-EVO III
New
Ultrasound System
P20 Elite
New
Color Doppler Ultrasound System
KC20

Print article
Radcal

Channels

MRI

view channel
Image: Exablate Prime features an enhanced user interface and enhancements to optimize productivity (Photo courtesy of Insightec)

Next Generation MR-Guided Focused Ultrasound Ushers In Future of Incisionless Neurosurgery

Essential tremor, often called familial, idiopathic, or benign tremor, leads to uncontrollable shaking that significantly affects a person’s life. When traditional medications do not alleviate symptoms,... Read more

General/Advanced Imaging

view channel
Image: The Tyche machine-learning model could help capture crucial information. (Photo courtesy of 123RF)

New AI Method Captures Uncertainty in Medical Images

In the field of biomedicine, segmentation is the process of annotating pixels from an important structure in medical images, such as organs or cells. Artificial Intelligence (AI) models are utilized to... Read more

Imaging IT

view channel
Image: The new Medical Imaging Suite makes healthcare imaging data more accessible, interoperable and useful (Photo courtesy of Google Cloud)

New Google Cloud Medical Imaging Suite Makes Imaging Healthcare Data More Accessible

Medical imaging is a critical tool used to diagnose patients, and there are billions of medical images scanned globally each year. Imaging data accounts for about 90% of all healthcare data1 and, until... Read more
Copyright © 2000-2024 Globetech Media. All rights reserved.