We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress
Sign In
Advertise with Us
GLOBETECH PUBLISHING LLC

Download Mobile App




New PET Tracer Images Epigenetics of the Human Brain

By MedImaging International staff writers
Posted on 25 Aug 2016
Print article
Image: Human brain MR-PET image using Martinostat (Photo courtesy of NMR).
Image: Human brain MR-PET image using Martinostat (Photo courtesy of NMR).
A novel positron emission tomography (PET) radiotracer can help reveal epigenetic activity within the human brain, claims a new study.

Developed by researchers at the Martinos Center for Biomedical Imaging (NMR; Charlestown, MA, USA), part of Massachusetts General Hospital (MGH; Boston, USA), Martinostat is patterned after histone deacetylase (HDAC) inhibitors in order to tightly bind to HDAC molecules in the brain. PET scans of the brains of eight healthy human volunteers who received Martinostat revealed characteristic patterns of uptake--reflecting HDAC expression levels--that were consistent among all participants.

The results revealed that HDAC expression was almost twice as high in gray matter as in white matter; and within gray matter structures, uptake was highest in the hippocampus and amygdala, and lowest in the putamen and cerebellum. Experiments with brain tissues from humans and baboons confirmed Martinostat's binding to HDAC, and studies with neural progenitor stem cells revealed specific genes regulated by this group of HDACs, many of which are known to be important in brain health and disease. The study was published on August 10, 2016, in Science Translational Medicine.

“HDAC dysregulation has been implicated in a growing number of brain diseases, so being able to study HDAC regulation both in the normal brain and through the progression of disease should help us better understand disease processes,” said senior author associate professor of radiology Jacob Hooker, PhD. “We've now started studies of patients with several neurologic or psychiatric disorders, and I believe Martinostat will help us understand the different ways these conditions are manifested and provide new insights into potential therapies.”

“The ability to image the epigenetic machinery in the human brain can provide a way to begin understanding interactions between genes and the environment,” added Dr. Hooker. “This could allow us to investigate questions such as why some people genetically predisposed to a disease are protected from it? Why events during early life and adolescence have such a lasting impact on brain health? Is it possible to ‘reset’ gene expression in the human brain?”

Epigenetics is the study of heritable changes in gene expression that does not involve changes to the underlying DNA sequence--i.e. a change in phenotype without a change in genotype--which in turn affects how cells read the genes. Epigenetic change is a regular and natural occurrence, but can also be influenced by several factors including age, the environment/lifestyle, and disease state. Epigenetic modifications can manifest as commonly as the manner in which cells terminally differentiate to end up as skin cells, liver cells, brain cells, etc. Epigenetic change can also have more damaging effects that can result in diseases like cancer.

Related Links:
Martinos Center for Biomedical Imaging
Massachusetts General Hospital
Gold Member
Solid State Kv/Dose Multi-Sensor
AGMS-DM+
New
Ultrasound Software
UltraExtend NX
Laptop Ultrasound Scanner
PL-3018
Crossover Angiography System
Trinias C16/C12/F12 Unity Smart Edition

Print article

Channels

Ultrasound

view channel
Image: Structure of the proposed transparent ultrasound transducer and its optical transmittance (Photo courtesy of POSTECH)

Ultrasensitive Broadband Transparent Ultrasound Transducer Enhances Medical Diagnosis

The ultrasound-photoacoustic dual-modal imaging system combines molecular imaging contrast with ultrasound imaging. It can display molecular and structural details inside the body in real time without... Read more

Nuclear Medicine

view channel
Image: PET/CT of a 60-year-old male patient with clinical suspicion of lung cancer (Photo courtesy of EJNMMI Physics)

Early 30-Minute Dynamic FDG-PET Acquisition Could Halve Lung Scan Times

F-18 FDG-PET scans are a way to look inside the body using a special dye, and these scans can be either static or dynamic. Static scans happen 60 minutes after the dye is administered into the body, showing... Read more

Imaging IT

view channel
Image: The new Medical Imaging Suite makes healthcare imaging data more accessible, interoperable and useful (Photo courtesy of Google Cloud)

New Google Cloud Medical Imaging Suite Makes Imaging Healthcare Data More Accessible

Medical imaging is a critical tool used to diagnose patients, and there are billions of medical images scanned globally each year. Imaging data accounts for about 90% of all healthcare data1 and, until... Read more

Industry News

view channel
Image: The acquisition will expand IBA’s medical imaging quality assurance offering (Photo courtesy of Radcal)

IBA Acquires Radcal to Expand Medical Imaging Quality Assurance Offering

Ion Beam Applications S.A. (IBA, Louvain-La-Neuve, Belgium), the global leader in particle accelerator technology and a world-leading provider of dosimetry and quality assurance (QA) solutions, has entered... Read more
Copyright © 2000-2024 Globetech Media. All rights reserved.