We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress
Sign In
Advertise with Us
GLOBETECH PUBLISHING LLC

Download Mobile App




Scientists Reveal New Functionality in Hippocampus

By MedImaging International staff writers
Posted on 10 Oct 2017
Print article
Image
Image
A team of researchers has revealed new insights into the role of the hippocampus in complex brain networks.

The researchers have made breakthroughs that offer new insights into how the hippocampus influences functional integration between different, spatially separated regions of the brain. The hippocampus may be damaged by Alzheimer's disease, as well as other types of dementia, and this can result in short-term memory loss or disorientation. Damage to the hippocampus is also related to diseases such as schizophrenia, epilepsy, transient global amnesia, and Post-Traumatic Stress Disorder (PTSD).

The findings were published in the August 2017 issue of the US journal Proceedings of the National Academy of Sciences (PNAS) by researchers from the University of Hong Kong (Pokfulam, Hong Kong).

The researchers showed that low-frequency activities in the hippocampus region of the brain, can enhance sensory responses, and drive functional connectivity in various parts of the cerebral cortex enhancing vision, hearing, and touch responses. The results also suggest this activity in the hippocampus can help learning and memory, during periods of slow-wave or deep sleep.

The scientists used functional Magnetic Resonance Imaging (fMRI), resting-state functional MRI (rsfMRI), for their research, and showed the potential of MRI and neuromodulation for the early diagnosis and treatment of brain diseases.

In their study the researchers found that low-frequency optogenetic excitation of the dorsal dentate gyrus region of the hippocampus, caused cortical/sub-cortical activities beyond the hippocampus and around the brain. The results also showed the significance of low-frequency activity in the hippocampus.

Related Links:
University of Hong Kong

Gold Member
Solid State Kv/Dose Multi-Sensor
AGMS-DM+
New
Breast Imaging Workstation
SecurView
Portable X-Ray Unit
AJEX240H
Ultrasound Needle Guide
Ultra-Pro II

Print article
Radcal

Channels

Nuclear Medicine

view channel
Image: The new SPECT/CT technique demonstrated impressive biomarker identification (Journal of Nuclear Medicine: doi.org/10.2967/jnumed.123.267189)

New SPECT/CT Technique Could Change Imaging Practices and Increase Patient Access

The development of lead-212 (212Pb)-PSMA–based targeted alpha therapy (TAT) is garnering significant interest in treating patients with metastatic castration-resistant prostate cancer. The imaging of 212Pb,... Read more

General/Advanced Imaging

view channel
Image: The Tyche machine-learning model could help capture crucial information. (Photo courtesy of 123RF)

New AI Method Captures Uncertainty in Medical Images

In the field of biomedicine, segmentation is the process of annotating pixels from an important structure in medical images, such as organs or cells. Artificial Intelligence (AI) models are utilized to... Read more

Imaging IT

view channel
Image: The new Medical Imaging Suite makes healthcare imaging data more accessible, interoperable and useful (Photo courtesy of Google Cloud)

New Google Cloud Medical Imaging Suite Makes Imaging Healthcare Data More Accessible

Medical imaging is a critical tool used to diagnose patients, and there are billions of medical images scanned globally each year. Imaging data accounts for about 90% of all healthcare data1 and, until... Read more
Copyright © 2000-2024 Globetech Media. All rights reserved.