We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress
Sign In
Advertise with Us
GLOBETECH PUBLISHING LLC

Download Mobile App




MR Imaging Technique Promises More Reliable Cancer Screening and Diagnosis

By MedImaging International staff writers
Posted on 13 Jun 2016
Print article
Image: The EU-funded Horizon 2020 GlucoCEST Imaging in Neoplastic Tumours Project (Photo courtesy of GLINT 2016).
Image: The EU-funded Horizon 2020 GlucoCEST Imaging in Neoplastic Tumours Project (Photo courtesy of GLINT 2016).
A project to develop a novel advanced medical imaging technology is intended to enable earlier detection of cancer, increase survival rates, and allow for a patients’ full recovery.

The new imaging technology is intended to provide more reliable and less invasive cancer diagnosis based on a novel Magnetic Resonance Imaging (MRI) technique that could lead to game-changing diagnostic tools for cancer imaging, and enable personalized cancer treatment.

The European Union (EU)-funded GlucoCEST Imaging of Neoplastic Tumours (GLINT) project began in January 2016, and makes use of a technique called glucose-based Chemical Exchange Saturation Transfer (glucoCEST). The technique can be used to detect the massive native glucose uptake in tumors as they grow. Previously such glucose measurements had to be made using a radio-labeled glucose imaging agent, and Positron Emission Tomography (PET) imaging. The new technique does not require contrast agents and enables closer treatment monitoring.

Scientific Coordinator of GLINT, and inventor of the glucoCEST method Professor Xavier Golay, University College London (London, UK), said, “GLINT offers for the first time a possibility to bring to the clinics a much-touted new imaging technique, allowing to directly image by MRI native, non-labeled glucose the way PET does it using the expensive radio-labeled sugar analogue fluorodeoxyglucose (FDG). This represents among others a huge hope for pediatric patients and for everyone required to undergo continuous surveillance of cancer progression. It also carries the hope to reduce or at least significantly limit the costs of diagnostic cancer imaging.”

Related Links:
University College London

Gold Member
Solid State Kv/Dose Multi-Sensor
AGMS-DM+
New
Ultrasound System
P20 Elite
Laptop Ultrasound Scanner
PL-3018
PACS Workstation
CHILI Web Viewer

Print article
Radcal

Channels

Nuclear Medicine

view channel
Image: The new SPECT/CT technique demonstrated impressive biomarker identification (Journal of Nuclear Medicine: doi.org/10.2967/jnumed.123.267189)

New SPECT/CT Technique Could Change Imaging Practices and Increase Patient Access

The development of lead-212 (212Pb)-PSMA–based targeted alpha therapy (TAT) is garnering significant interest in treating patients with metastatic castration-resistant prostate cancer. The imaging of 212Pb,... Read more

General/Advanced Imaging

view channel
Image: The Tyche machine-learning model could help capture crucial information. (Photo courtesy of 123RF)

New AI Method Captures Uncertainty in Medical Images

In the field of biomedicine, segmentation is the process of annotating pixels from an important structure in medical images, such as organs or cells. Artificial Intelligence (AI) models are utilized to... Read more

Imaging IT

view channel
Image: The new Medical Imaging Suite makes healthcare imaging data more accessible, interoperable and useful (Photo courtesy of Google Cloud)

New Google Cloud Medical Imaging Suite Makes Imaging Healthcare Data More Accessible

Medical imaging is a critical tool used to diagnose patients, and there are billions of medical images scanned globally each year. Imaging data accounts for about 90% of all healthcare data1 and, until... Read more
Copyright © 2000-2024 Globetech Media. All rights reserved.