We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress
Sign In
Advertise with Us
GLOBETECH PUBLISHING LLC

Download Mobile App




Neuro-Imaging Offers Potential for Determining the Underlying Pathology of Concussions

By MedImaging International staff writers
Posted on 08 Jun 2016
Print article
Image: Printing a 3D copy of the brain is a useful educational tool for communications between radiologists and patients with brain tumors (Photo courtesy of RSNA).
Image: Printing a 3D copy of the brain is a useful educational tool for communications between radiologists and patients with brain tumors (Photo courtesy of RSNA).
Three-dimensional (3D) Magnetic Resonance (MRI) Diffusion-Tensor Images (DTI) of the brain are changing neurosurgical care of patients with Traumatic Brain Injuries (TBI), Mild TBI, or brain tumors, and could also be used for printing 3D functional models of the brain.

Two recent studies have found that MRI-DTI can be used to find the underlying pathology of concussion injuries, and provide prognoses for TBI and MTBI patients to help those most at risk for persistent, long-term problems. One of the studies found that women have a higher risk of negative long-term effects of head injuries than men. The researchers also found evidence of microstructural damage to white matter in the brains of women with concussion injuries and a worse cognitive performance than in men with similar injuries. The researchers also found that MRI-DTI can play a significant role in pre-operative mapping of the brain of brain tumor patients, and change their neurosurgical care.

Researchers at the Albert Einstein College of Medicine and Montefiore Medical Center (New York, NY, USA) and at the Medical College of Wisconsin (Milwaukee, WI, USA) carried out the studies.

John. L. Ulmer, MD, Medical College of Wisconsin, said, “The mapping depicts individual white matter tracts, which aid surgeons in safely resecting and removing brain tumors. Using standard imaging alone is insufficient in determining the relationship of the brain tumor to any of the given white matter networks around it. Because white matter is difficult to identify anatomically during surgery surgeons often cannot tell which white matter tract controls critical functional areas such as motor skills, language, vision and memory. DTI creates a color-coded image of the brain that establishes functional network resection boundaries around the tumor. Preoperative DTI helps the surgeon avoid injuring eloquent brain networks when taking tumors out. A next step in preoperative neurosurgery is adapting 3D functional brain printing to provide neurosurgeons with a 3D perspective of the critical functional white matter network relationships as well as an educational tool during consultations with brain tumor patients.

Related Links:
Albert Einstein College of Medicine
Medical College of Wisconsin
Gold Member
Solid State Kv/Dose Multi-Sensor
AGMS-DM+
New
Breast Imaging Workstation
SecurView
New
Color Doppler Ultrasound System
KC20
PACS Workstation
CHILI Web Viewer

Print article
Radcal

Channels

Nuclear Medicine

view channel
Image: The new SPECT/CT technique demonstrated impressive biomarker identification (Journal of Nuclear Medicine: doi.org/10.2967/jnumed.123.267189)

New SPECT/CT Technique Could Change Imaging Practices and Increase Patient Access

The development of lead-212 (212Pb)-PSMA–based targeted alpha therapy (TAT) is garnering significant interest in treating patients with metastatic castration-resistant prostate cancer. The imaging of 212Pb,... Read more

General/Advanced Imaging

view channel
Image: The Tyche machine-learning model could help capture crucial information. (Photo courtesy of 123RF)

New AI Method Captures Uncertainty in Medical Images

In the field of biomedicine, segmentation is the process of annotating pixels from an important structure in medical images, such as organs or cells. Artificial Intelligence (AI) models are utilized to... Read more

Imaging IT

view channel
Image: The new Medical Imaging Suite makes healthcare imaging data more accessible, interoperable and useful (Photo courtesy of Google Cloud)

New Google Cloud Medical Imaging Suite Makes Imaging Healthcare Data More Accessible

Medical imaging is a critical tool used to diagnose patients, and there are billions of medical images scanned globally each year. Imaging data accounts for about 90% of all healthcare data1 and, until... Read more
Copyright © 2000-2024 Globetech Media. All rights reserved.