We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress
Sign In
Advertise with Us
GLOBETECH PUBLISHING LLC

Download Mobile App




Brain Process Underlying Recognition of Hand Gestures Found to Develop Even When Blind

By MedImaging International staff writers
Posted on 16 Sep 2014
Print article
Researchers have discovered by using neuroimaging that activated brain regions of congenitally blind individuals and activated brain regions of sighted individuals use common brain regions when recognizing human hand gestures. They indicated that a region of the neural network that recognizes others’ hand gestures is formed in the same way, even without visual information.

The investigators set out to find out if a distinctive mechanism occurs in the brain of congenitally blind individuals when understanding and learning others’ gestures and whether it is the same process that occurs in sighted individuals. Japanese researchers figured out that activated brain regions of congenitally blind individuals and activated brain regions of sighted individuals share common regions when recognizing human hand gestures. They indicated that a region of the neural network that recognizes others’ hand gestures is formed in the same way even without visual information.

The findings were published July 23, 2014, in the Journal of Neuroscience. Brain processes perceive human bodies from inanimate objects and shows a particular response. A part of a region of the visual cortex region of the brain that processes visual information supports this mechanism. Because visual data are mostly used in perception, this is understandable, however, for perception using haptic information and also for the recognition of one’s own gestures, it has been recently determined that the same brain region is triggered. The investigators believe that there is a mechanism that is formed regardless of the sensory modalities and recognizes human bodies.

Blind and sighted individuals participated in the study of the research group of Assist. Prof. Ryo Kitada of the National Institute for Physiological Sciences, National Institutes of Natural Sciences (Okazaki, Aichi, Japan). With their eyes closed, they were told to touch toy cars, plastic casts of hands, and teapots, and identify the shape. Sighted individuals and blind individuals were found to both make an identification with the same accuracy.

By measuring the activated brain region using functional magnetic resonance imaging (fMRI) scanning, for plastic casts of hands and not for teapots or toy cars, the researchers were able to locate a common activated brain region, irrespective of visual experience. However, it also revealed a region showing signs of activity that is dependent on the duration of the visual experience, and that this region acts as a supplement when recognizing hand gestures.

As Assist. Prof. Ryo Kitada noted, “Many individuals are active in many parts of the society even with the loss of their sight as a child. Developmental psychology has been advancing its doctrine based on sighted individuals. I wish this finding will help us grasp how blind individuals understand and learn about others and be seen as an important step in supporting the development of social skills for blind individuals.”

Related Links:

Japanese National Institute for Physiological Sciences


Gold Member
Solid State Kv/Dose Multi-Sensor
AGMS-DM+
Dose Calibration Electrometer
PC Electrometer
New
Ultrasound Doppler System
Doppler BT-200
New
Ultrasound Table
Ergonomic Advantage (EA) Line

Print article

Channels

Radiography

view channel
:	Image: The AI model could be a valuable adjunct to human radiologists in breast cancer diagnoses and risk prediction (Photo courtesy of 123RF)

AI Model Predicts 5-Year Breast Cancer Risk from Mammograms

Approximately 13% of U.S. women, or one in every eight, are predicted to develop invasive breast cancer over their lifetime, with 1 in 39 women (3%) succumbing to the illness, according to the American... Read more

Nuclear Medicine

view channel
Image: The AI system uses scintigraphy imaging for early diagnosis of cardiac amyloidosis (Photo courtesy of 123RF)

AI System Automatically and Reliably Detects Cardiac Amyloidosis Using Scintigraphy Imaging

Cardiac amyloidosis, a condition characterized by the buildup of abnormal protein deposits (amyloids) in the heart muscle, severely affects heart function and can lead to heart failure or death without... Read more

General/Advanced Imaging

view channel
Image: The CIARTIC Move self-driving mobile C-arm has received FDA clearance (Photo courtesy of Siemens)

Self-Driving Mobile C-Arm Reduces Imaging Time during Surgery

Intraoperative imaging faces significant challenges due to staff shortages and the high demands placed on surgical teams in the operating room (OR). A common challenge during many OR procedures is the... Read more

Imaging IT

view channel
Image: The new Medical Imaging Suite makes healthcare imaging data more accessible, interoperable and useful (Photo courtesy of Google Cloud)

New Google Cloud Medical Imaging Suite Makes Imaging Healthcare Data More Accessible

Medical imaging is a critical tool used to diagnose patients, and there are billions of medical images scanned globally each year. Imaging data accounts for about 90% of all healthcare data1 and, until... Read more

Industry News

view channel
Image: Samsung Medison CEO Mr. Yongkwan Kim and Bracco Imaging CEO Dr. Fulvio Renoldi Bracco endorsed a MoU agreement (Photo courtesy of Bracco Group)

Samsung and Bracco Enter Into New Diagnostic Ultrasound Technology Agreement

Samsung Medison (Seoul, South Korea) and Bracco Imaging (Milan, Italy) have entered into a Memorandum of Understanding (MoU) agreement to pioneer a new area for diagnostic ultrasound devices and contrast agents.... Read more
Copyright © 2000-2024 Globetech Media. All rights reserved.