Features | Partner Sites | Information | LinkXpress
Sign In
Demo Company
Ampronix
Schiller

MRI Tracks Infant Brain Growth in First Months of Life

By Medimaging International staff writers
Posted on 26 Aug 2014
Image: In a preterm infant’s brain, an MRI scan can reveal abnormalities that were undetected by previous methods. The scans on the left show normal gray matter, while those on the right show abnormal gray matter (Photo courtesy of Washington University in St. Louis).
Image: In a preterm infant’s brain, an MRI scan can reveal abnormalities that were undetected by previous methods. The scans on the left show normal gray matter, while those on the right show abnormal gray matter (Photo courtesy of Washington University in St. Louis).
For the first time, researchers have used magnetic resonance imaging (MRI) of the newborn brain to calculate the volume of multiple brain regions and to map out regional growth trajectories during the infant’s first 90 days of life.

This new approach to measuring early brain development of infants results in more effective whole brain growth charts and providing the first estimates for growth trajectories of subcortical areas during the first three months after birth.

The study was conducted by researchers from the University of California (UC), San Diego School of Medicine (USA) and the University of Hawaii (Hilo, USA). Assessing the asymmetry, size, and rate of growth of different brain regions could be essential in detecting and treating the earliest signs of neurodevelopmental disorders, such as autism or perinatal brain injury.

The study was published August 11, 2014, in the Journal of the American Medical Association (JAMA) Neurology. For the first time, researchers used magnetic resonance imaging (MRI) of the newborn brain to calculate the volume of multiple brain regions and to map out regional growth trajectories during the baby’s first 90 days of life. The study tracked the brain growth of full term and premature babies with no neurologic or major health issues.

“A better understanding of when and how neurodevelopmental disorders arise in the postnatal period may help assist in therapeutic development, while being able to quantify related changes in structure size would likely facilitate monitoring response to therapeutic intervention. Early intervention during a period of high neuroplasticity could mitigate the severity of the disorders in later years,” said Dominic Holland, PhD, first author of the study and researcher in the department of neurosciences at UC San Diego School of Medicine.

Clinicians have long monitored brain growth by measuring the outside of the infant’s head with a measuring tape. The findings are then plotted on a percentile chart to indicate if normal growth patterns exist. Even though the measurement is helpful for observing growth, it does not reveal if the individual structures within the brain are developing normally.

On average, researchers found the newborn brain grows one percent each day immediately following birth but slows to 0.4% per day by three months. In general, for both sexes, the cerebellum, which is involved in motor control, grew at the highest rate, more than doubling volume in 90 days. The hippocampus grew at the slowest rate, increasing in volume by only 47% in 90 days, suggesting that the episodic memory development is not as critical at this stage of life.

“We found that being born a week premature, for example, resulted in a brain four to five percent smaller than expected for a full term baby. The brains of premature babies actually grow faster than those of term-born babies, but that’s because they’re effectively younger—and younger means faster growth,” said Dr. Holland. “At 90 days post-delivery, however, premature brains were still two percent smaller. The brain’s rapid growth rates near birth suggest that inducing early labor, if not clinically warranted, may have a negative effect on the infant’s neurodevelopment.”

The study also revealed that many asymmetries in the brain are already established in the early postnatal period, including the right hippocampus being larger than the left, which historically, has been suggested to occur in the early adolescent years. Cerebral asymmetry is associated with functions such as dexterity and language abilities.

Next steps involve continuing to make advances in the application of different MRI modalities to examine the newborn brain. MRI provides high quality images of different types of tissue and does not involve radiation, like computed tomography (CT). Future research will investigate how brain structure sizes at birth and subsequent growth rates are altered as a result of alcohol and drug consumption during pregnancy.

“Our findings give us a deeper understanding of the relationship between brain structure and function when both are developing rapidly during the most dynamic postnatal growth phase for the human brain,” concluded Dr. Holland.

Related Links:

University of California, San Diego School of Medicine
University of Hawaii



Channels

Radiography

view channel
Image: 3-D image of a fly using a new X-ray Imaging Technique (Photo courtesy of Nature Communications, and LMU).

Pioneering Technique for Imaging Biological Tissues Developed

Researchers have developed a novel X-ray imaging system that uses a compact X-ray source generated by ultra-short, high-power laser pulses, combined with phase-contrast X-ray tomography, to provide detailed... Read more

Ultrasound

view channel

New Ultrasound System Enhances Patient Care and User Experience

A new ultrasound system with innovative specialized transducers and improved image quality, intended for general imaging, women’s health, and shared service applications, has been announced. The system features improved accuracy, performance, assessment tools, advanced automation, and an enhanced user experience.... Read more

Nuclear medicine

view channel

Clinical Study Shows Added Value of Amyloid PET Imaging in the Diagnosis and Treatment of Dementia

Early-onset dementia patients could benefit from a new PET imaging agent developed by a major medical imaging vendor. The results of a clinical study showing the effectiveness of the amyloid PET imaging agent were presented at the Alzheimer’s Association International Conference (AAIC 2015) in Washington DC (USA).... Read more

General/Advanced Imaging

view channel
Image: Illustration of a new technique using Optical Coherence Tomography that could help surgeons differentiate a human brain tumor, red, from surrounding noncancerous tissue, green (Photo courtesy of  Carmen Kut, Jordina Rincon-Torroella, Xingde Li and Alfredo Quinones-Hinojosa/Johns Hopkins Medicine).

Imaging Technique Helps Safer and More Effective Removal of Brain Tumors

Researchers at the Johns Hopkins University have demonstrated a new imaging technology that could enable neurosurgeons to better differentiate between healthy and cancerous brain tissue and perform safer... Read more

Imaging IT

view channel
Image: Siemens Healthcare’s syngo.via MM Oncology facilitates compliance by clinicians to British Thoracic Society guidelines for the investigation and management of pulmonary nodules.(Photo courtesy of Siemens Healthcare).

Oncology Software Update Compliant with New BTS Guidelines

A key diagnostic imaging vendor has announced that it has modified its oncology software solution to ensure compliance with new British Thoracic Society (BTS) guidelines for lung nodule screening.... Read more

Industry News

view channel

Report Forecasts Growth of Global Computed Tomography Sector to USD 6 billion by 2019

A new report has been published that analyzes global Computed Tomography (CT) market shares, strategies, and forecasts, for the years 2013 to 2018. The report entitled “Global Computed Tomography (CT) Market Shares, Strategies, and Forecasts, 2013 to 2018,” predicts that global CT markets will continue to grow moderately... Read more
 

Events

11 Sep 2015 - 12 Sep 2015
19 Sep 2015 - 24 Sep 2015
Copyright © 2000-2015 Globetech Media. All rights reserved.