We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress
Sign In
Advertise with Us
GLOBETECH PUBLISHING LLC

Download Mobile App




MRI Guidance, Remote-Controlled Catheter Technology May Improve Visualization of the Brain During Stroke Treatment

By MedImaging International staff writers
Posted on 13 Aug 2014
Print article
New technology in the form of a magnetically-assisted remote-controlled catheter (MARC) has been designed to allow physicians to see and evaluate brain tissue more accurately while treating a stroke.

Investigators presented their study’s results July 29, 2014, at the Society of NeuroInterventional Surgery (SNIS) 11th annual meeting, held in Colorado Springs (CO, USA). The new findings should advance the field of neurointervention, a discipline that facilitates stroke treatment by navigating a catheter (the tubing through which clot-dissolving drugs or clot retrieval devices are applied) through the blood vessels, from a point of entry in the groin up to the problematic spot in the brain. Neurointerventionists typically undertake this approach by manually directing the catheter and visualizing its progress under conventional X-ray guidance.

With MARC, the researchers tried to determine if a remote-controlled catheter under magnetic resonance imaging (MRI) guidance could more effectively accomplish maneuvering through complex vessel anatomy, which would ultimately allow for the enhanced visualization of the brain tissue affected during a stroke. “Given that MRI is the gold standard by which we determine brain tissue viability, it is exciting that we potentially now have new MRI-compatible technology that enables us, while treating a stroke, to make real-time assessments about whether brain tissue is dead or alive,” said Steven Hetts, MD, lead study author and associate professor of radiology at the University of California, San Francisco (UCSF; USA). “The implications are numerous, including improved medical decision-making, which would naturally result in optimizing patient safety and clinical outcomes.”

To evaluate the performance of MARC, Dr. Hetts and his colleagues tried to determine mean procedure times and success data for a custom, clinical-grade MARC prototype under MRI guidance as compared to a manually-navigated catheter, under both MRI and standard X-ray guidance—each procedure utilizing a cryogel vascular model designed to simulate the main and branch blood vessels in a living human. The MRI-guided procedures were performed at 1.5 Tesla using a balanced steady-state free precession sequence in the type of clinical MRI scanner available in most hospitals.

The study findings showed that MARC was clearly visible under MRI guidance and was used to effectively complete 192 (80%) of 240 total turns around blood vessels as compared to the manually directed catheter under both MRI and X-ray guidance, at 144 (60%) of 240 total turns and 119 (74%) of 160 total turns, respectively. MARC also was faster than the manually directed catheter under MRI, with a mean procedure time of 37 seconds per turn as compared to 55 seconds, but comparable to the manually directed catheter under X-ray guidance which required a mean of 44 seconds for each turn. When assessing the time required steering the various angles of branch vessels at turns of 45°, 60°, and 75°, MARC was shown to be faster than the manually directed catheter under MRI guidance.

“Given that the success of neurointerventional stroke treatment is directly tied to how fast and accurately physicians can eliminate the impact of a clot and restore blood flow to viable portions of the brain, technology that facilitates this objective stands to be transformative,” said Dr. Hetts. “By proving that MRI-guided neurointervention could be more effective than current standard approaches to stroke treatment, we are taking a significant step forward in the advancement of our field.”

Related Links:

University of California, San Francisco


Gold Member
Solid State Kv/Dose Multi-Sensor
AGMS-DM+
Digital Radiography Acquisition Software
VXvue with PureImpact
New
Oncology Information System
RayCare
New
Ultrasound Needle Guide
Ultra-Pro II

Print article

Channels

Radiography

view channel
:	Image: The AI model could be a valuable adjunct to human radiologists in breast cancer diagnoses and risk prediction (Photo courtesy of 123RF)

AI Model Predicts 5-Year Breast Cancer Risk from Mammograms

Approximately 13% of U.S. women, or one in every eight, are predicted to develop invasive breast cancer over their lifetime, with 1 in 39 women (3%) succumbing to the illness, according to the American... Read more

Nuclear Medicine

view channel
Image: The AI system uses scintigraphy imaging for early diagnosis of cardiac amyloidosis (Photo courtesy of 123RF)

AI System Automatically and Reliably Detects Cardiac Amyloidosis Using Scintigraphy Imaging

Cardiac amyloidosis, a condition characterized by the buildup of abnormal protein deposits (amyloids) in the heart muscle, severely affects heart function and can lead to heart failure or death without... Read more

General/Advanced Imaging

view channel
Image: The CIARTIC Move self-driving mobile C-arm has received FDA clearance (Photo courtesy of Siemens)

Self-Driving Mobile C-Arm Reduces Imaging Time during Surgery

Intraoperative imaging faces significant challenges due to staff shortages and the high demands placed on surgical teams in the operating room (OR). A common challenge during many OR procedures is the... Read more

Imaging IT

view channel
Image: The new Medical Imaging Suite makes healthcare imaging data more accessible, interoperable and useful (Photo courtesy of Google Cloud)

New Google Cloud Medical Imaging Suite Makes Imaging Healthcare Data More Accessible

Medical imaging is a critical tool used to diagnose patients, and there are billions of medical images scanned globally each year. Imaging data accounts for about 90% of all healthcare data1 and, until... Read more

Industry News

view channel
Image: Samsung Medison CEO Mr. Yongkwan Kim and Bracco Imaging CEO Dr. Fulvio Renoldi Bracco endorsed a MoU agreement (Photo courtesy of Bracco Group)

Samsung and Bracco Enter Into New Diagnostic Ultrasound Technology Agreement

Samsung Medison (Seoul, South Korea) and Bracco Imaging (Milan, Italy) have entered into a Memorandum of Understanding (MoU) agreement to pioneer a new area for diagnostic ultrasound devices and contrast agents.... Read more
Copyright © 2000-2024 Globetech Media. All rights reserved.