Features | Partner Sites | Information | LinkXpress
Sign In
Samsung
Ampronix
ElsMed

Research Demonstrates MRI Acts as Predictive Marker for Epilepsy Development Following Febrile Seizure

By Medimaging International staff writers
Posted on 16 Jul 2014
Within hours of a fever-induced seizure, magnetic resonance imaging (MRI) may be able to identify brain changes that occur in those most likely to develop epilepsy later in life, according to recent animal research. The findings may soon help improve ways to detect children at an increased risk for developing epilepsy and direct efforts to prevent epilepsy development in those at greatest risk.

Convulsions brought on by fever, febrile seizures typically last only a few minutes and are relatively common in infants and small children. However, in some cases, children experience febrile seizures that last for more than 30 minutes (known as febrile status epilepticus [FSE]). Of these children, 40% will go on to develop temporal lobe epilepsy (TLE)—a typical and frequently treatment-resistant brain disorder. Physicians currently have no way to anticipate which of the children with a history of extended febrile seizures (FSE) will go on to develop TLE, and children typically do not experience the beginning of the disease until 10–12 years after the onset of FSE.

Tallie Z. Baram, MD, PhD, and her colleagues at the University of California-Irvine (USA), in this study, used MRI scanning to examine the brains of young rats right after after FSE was induced to compare the brains of the animals that would go on to develop TLE and those that would not. The researchers, who published their findings June 25, 2014, in the Journal of Neuroscience, monitored the rats as they developed over 10 months for signs of TLE. Of the animals that developed epilepsy over the course of the study, all had a distinctive MRI signal in a part of the brain called the amygdala when imaged within hours after the FSE. This signal was not visible in the rats that remained epilepsy-free for the duration of the experiment.

“This remarkable discovery got us to ask two key questions,” Dr. Baram said. “First, can we figure out what is going on in the brain that causes this new signal? And second, can we detect a similar predictive signal in children after febrile status epilepticus?”

Additional study into the origin of the MRI signal revealed that the brains of the lab rats that went on to develop epilepsy were consuming more energy and using up more oxygen in the amygdala hours after long febrile seizures than the brains of the rats that did not develop epilepsy later in life. “Detecting reduced oxygen may be an early marker of brain damage that leads to subsequent spontaneous seizures and epilepsy,” explained Hal Blumenfeld, MD, PhD, who studies epilepsy at Yale University (New Haven, CT, USA), and was not involved in this study.

Although the current study was conducted in rodents using a high-power laboratory scanner, additional studies by Dr. Baram’s group revealed that the epilepsy-predicting signal could be detected using a standard hospital MRI scanner. This indicates that similar evaluations could be done in children with FSE to begin to evaluate whether this signal appears in children after FSE and whether it predicts the emergence of epilepsy later on in life.

“Preventive therapy development is hampered by our inability to identify early the individuals who will develop TLE,” Dr. Baram explained. “Finding a predictive signal using clinically applicable noninvasive brain scans holds promise for predicting epilepsy after FSE.”

Related Links:

University of California-Irvine



ARAB HEALTH
Supersonic Imagine
PHS Technologies

Channels

Radiography

view channel
Image: Coronary CT angiography images demonstrate examples of high-risk plaque features. A, Image was obtained in a 63-year-old man with partially calcified plaque, positive remodeling (vertical arrow), and spotty calcium (horizontal arrow). B, A cross-sectional view of a noncalcified plaque in a 65-year-old man demonstrates a napkin-ring sign with a central low-attenuation area, surrounded by a peripheral rim of higher attenuation (arrow) next to the lumen (∗). C, Image in a 60-year-old woman with partially calcified plaque demonstrates a low CT number in the midportion (arrow) (Photo courtesy of the journal Radiology).

Coronary CT Angiography Reveals Link between Coronary Artery Plaque and Liver Disease

Researchers using coronary computed tomography angiography (CCTA) imaging have found a close correlation between high-risk coronary artery plaque and a common liver disease. The research revealed that... Read more

Nuclear medicine

view channel
Image: The RayPilot placed directly on the original carbon fiber couch (Photo courtesy of Micropos Medical).

Hypofractionated Prostate Radiotherapy Electromagnetic Positioning Tool Tracks Tumors in Real Time During Treatment

A new add-on tool to existing radiotherapy equipment has been designed to track a tumor at any time during the treatment. The system could enable the clinic to enhance precision in their cancer treatment,... Read more

General/Advanced Imaging

view channel

Photoacoustic Imaging Optimizes Visualization of Cancerous Tissues Using Time Reversal Technology

Unique time-reversal technology is being used to better focus light in tissue, such as muscles and organs. Current high-resolution optical imaging technology allows researchers to see about 1-mm-deep into the body. In an effort to enhance this imaging technology, the investigators are employing photoacoustic imaging, which... Read more

Imaging IT

view channel

Use of Radiology Data Mining Tool Reduces Length of Stay for CT Biopsy

Use of a data and analysis tool allows radiology clinical coordinators to facilitate a patient-centered imaging service, acting as a care manager for patients with positive findings on their computed tomography (CT) scans. Syed F. Zaidi, MD, president of Radiology Associates of Canton (RAC; OH, USA) and chief executive... Read more

Industry News

view channel
Image: Zygote’s human anatomy collections (Photo courtesy of Zygote).

Partnership to Provide 3-D Holographic Imaging to Medical Professionals

Zebra Imaging, Inc. (Austin, TX, USA), a provider of three-dimensional (3-D) holographic visualization technologies, reported on a partnership with the Zygote Media Group, Inc. (American Fork, UT, USA),... Read more
 

Events

01 Dec 2014 - 05 Dec 2014
11 Jan 2015 - 14 Jan 2015
Copyright © 2000-2014 Globetech Media. All rights reserved.