Features | Partner Sites | Information | LinkXpress
Sign In
GLOBETECH PUBLISHING LLC
Schiller
Ampronix

Research Demonstrates MRI Acts as Predictive Marker for Epilepsy Development Following Febrile Seizure

By Medimaging International staff writers
Posted on 16 Jul 2014
Within hours of a fever-induced seizure, magnetic resonance imaging (MRI) may be able to identify brain changes that occur in those most likely to develop epilepsy later in life, according to recent animal research. The findings may soon help improve ways to detect children at an increased risk for developing epilepsy and direct efforts to prevent epilepsy development in those at greatest risk.

Convulsions brought on by fever, febrile seizures typically last only a few minutes and are relatively common in infants and small children. However, in some cases, children experience febrile seizures that last for more than 30 minutes (known as febrile status epilepticus [FSE]). Of these children, 40% will go on to develop temporal lobe epilepsy (TLE)—a typical and frequently treatment-resistant brain disorder. Physicians currently have no way to anticipate which of the children with a history of extended febrile seizures (FSE) will go on to develop TLE, and children typically do not experience the beginning of the disease until 10–12 years after the onset of FSE.

Tallie Z. Baram, MD, PhD, and her colleagues at the University of California-Irvine (USA), in this study, used MRI scanning to examine the brains of young rats right after after FSE was induced to compare the brains of the animals that would go on to develop TLE and those that would not. The researchers, who published their findings June 25, 2014, in the Journal of Neuroscience, monitored the rats as they developed over 10 months for signs of TLE. Of the animals that developed epilepsy over the course of the study, all had a distinctive MRI signal in a part of the brain called the amygdala when imaged within hours after the FSE. This signal was not visible in the rats that remained epilepsy-free for the duration of the experiment.

“This remarkable discovery got us to ask two key questions,” Dr. Baram said. “First, can we figure out what is going on in the brain that causes this new signal? And second, can we detect a similar predictive signal in children after febrile status epilepticus?”

Additional study into the origin of the MRI signal revealed that the brains of the lab rats that went on to develop epilepsy were consuming more energy and using up more oxygen in the amygdala hours after long febrile seizures than the brains of the rats that did not develop epilepsy later in life. “Detecting reduced oxygen may be an early marker of brain damage that leads to subsequent spontaneous seizures and epilepsy,” explained Hal Blumenfeld, MD, PhD, who studies epilepsy at Yale University (New Haven, CT, USA), and was not involved in this study.

Although the current study was conducted in rodents using a high-power laboratory scanner, additional studies by Dr. Baram’s group revealed that the epilepsy-predicting signal could be detected using a standard hospital MRI scanner. This indicates that similar evaluations could be done in children with FSE to begin to evaluate whether this signal appears in children after FSE and whether it predicts the emergence of epilepsy later on in life.

“Preventive therapy development is hampered by our inability to identify early the individuals who will develop TLE,” Dr. Baram explained. “Finding a predictive signal using clinically applicable noninvasive brain scans holds promise for predicting epilepsy after FSE.”

Related Links:

University of California-Irvine



Supersonic Imagine
PCI Precision Charts
ARAB HEALTH

Channels

Radiography

view channel
Image: This shows a 3D print model used in surgical planning (Photo courtyes of RSNA).

3D Printing and CT Imaging Used to Guide Human Face Transplants

Surgeons are using computed tomography (CT) imaging and three-dimensional (3-D) printing technology to reconstruct life-size models of patients’ heads to help better control the outcome in face transplantation... Read more

General/Advanced Imaging

view channel
Image: The DermSpectra total body digital skin imaging system (Photo courtesy of DermSpectra).

Total Body Digital Skin Imaging System Developed for Dermatology and Primary Care Practices

A total body digital skin imaging system enables physicians to track critical skin changes (skin cancers, eczema, lesions, psoriasis, and rashes) in their office, over time. The DermSpectra (Tucson,... Read more

Imaging IT

view channel
Image: The DCMSYS Interface WebBridge is designed to connect to DCMSYS product range to access all the patient data, search studies, link data to the appropriate study and store, modify, share, and connect to any repository (Photo courtesy of Dicom Systems).

WebBridge Software for Medical Facilities Allows Third-Party Interfaces to Develop Front-End Functionality in a Matter of Days

Designed for medical facilities of any size, new web software allows any native or web-based third-party application to upload any non-standard data (e.g., JPEG, TFF, PDF, TXT, etc.) to an enterprise imaging... Read more

Industry News

view channel

X-Ray and Digital X-Ray Sector Nears USD 8 Billion in 2014

The market for both traditional and digital X-ray systems is estimated to reach USD 7.9 billion in 2014, according to a recent report from an international market research company. The healthcare market research publisher noted that upgrades of existing equipment and the rising incidence of disease are fueling the market.... Read more
 
Copyright © 2000-2014 Globetech Media. All rights reserved.