Features | Partner Sites | Information | LinkXpress
Sign In
Schiller
GLOBETECH PUBLISHING LLC
Ampronix

Calibration Tools Used to Enhance Ultralow Field MRI Technology

By Medimaging International staff writers
Posted on 16 Dec 2013
Image: NIST physicist Michael Boss positions a prototype NIST phantom in an ultralow-field magnetic resonance imaging scanner at the University of California at Berkeley. NIST phantoms are intended to help assess and validate this experimental imaging method, which offers advantages in diagnosing and monitoring of certain medical conditions (Photo courtesy of NIST).
Image: NIST physicist Michael Boss positions a prototype NIST phantom in an ultralow-field magnetic resonance imaging scanner at the University of California at Berkeley. NIST phantoms are intended to help assess and validate this experimental imaging method, which offers advantages in diagnosing and monitoring of certain medical conditions (Photo courtesy of NIST).
A US technology office has developed prototype calibration tools for an experimental medical imaging technique that offers new benefits in diagnosing and tracking of specific cancers and other medical disorders.

The US National Institute of Standards and Technology (NIST; Gaithersburg, MD, USA) designed, built, and evaluated two prototype phantoms for calibrating ultralow-field (ULF) magnetic resonance imaging (MRI) systems.

The NIST prototypes are the first standard calibration tools for ULF-MRI, offering a quantitative means to assess performance, validate the technique, and directly compare different experimental and clinical MRI scanners. “Tissues that may look the same in clinical MRI can look very different in ULF-MRI, which provides new contrast mechanisms,” NIST physicist Dr. Michael Boss stated. “Our hope is that we can move this technique along to attract more interest from [industry] vendors.”

MRI noninvasively images soft tissues based on measurements of how hydrogen nuclei respond to magnetic fields. ULF-MRI enhances tissue contrast in specific types of MRI scans. Prostate tumors, for example, can be difficult to see with conventional MRI but show up clearly under ULF-MRI. ULF-MRI has also been used in research approaches to image the brain, and assessed in at least one nonmedical application, inspection of liquids at airports.

ULF-MRI also offers practical advantages: the systems are more streamlined, lighter in weight, and less costly than conventional MRI scanners. That is because ULF-MRI operates at much lower magnetic field strengths, measured in micro-Teslas, thousands of times lower than conventional MRI, which operates at up to 3 Teslas and requires large magnets. The low magnetic field strength means ULF-MRI requires the most sensitive magnetometers available: superconducting quantum interference devices (SQUIDs). This is convenient in that it makes ULF-MRI suitable for combining with other SQUID-based imaging techniques such as magnetoencephalography.

NIST scientists earlier designed phantoms for standard MRI systems and also have extensive experience both making and using SQUIDs. NIST’s new ULF-MRI phantoms are short plastic cylinders, shaped like hockey pucks but a bit smaller, containing six or 10 plastic jars filled with various salt solutions that become magnetized in a magnetic field. Each phantom measures a different aspect of scanner performance such as spatial resolution. NIST researchers tested the new phantoms on both a conventional MRI system at the University of Colorado Health Sciences Center (Denver, CO, USA) and a research ULF-MRI scanner at the University of California (UC) at Berkeley, where the technique was first demonstrated about than 10 years ago.

Tests findings revealed that the prototype phantoms are well matched to ULF-MRI applications and they allow direct comparison of ULF and clinical MRI system performance. NIST researchers now plan to integrate design improvements based on lessons gleaned from the prototypes, with the aim of improving phantom stability and providing traceability to standard measurement units. NIST and the University of California (UC) Berkeley (USA) researchers also plan to work together to develop ULF-MRI technology for the detection of prostate and breast cancers.

NIST’s phantoms for conventional MRI systems are currently being tested by hospitals and MRI manufacturers, and Sigma-K Corp. (Durham, NC, USA) is devising ways for making copies for more widespread distribution under a NIST Small Business Innovation Research Award (SBIR).

The study’s findings were published online November 26, 2013, in the journal Magnetic Resonance in Medicine.

Related Links:

National Institute of Standards and Technology
University of California, Berkeley
Sigma-K



Channels

Radiography

view channel
Image: Fujifilm\'s Aspire Cristalle (Photo courtesy of Business Wire).

Diagnostic Imaging Solutions Provider Submits Mammography Upgrade for FDA Approval

A leading provider of medical informatics solutions and diagnostic imaging products has submitted the first of several modules of its Digital Breast Tomosynthesis (DBT) upgrade for its mammography system,... Read more

Ultrasound

view channel

New Ultrasound System Enhances Patient Care and User Experience

A new ultrasound system with innovative specialized transducers and improved image quality, intended for general imaging, women’s health, and shared service applications, has been announced. The system features improved accuracy, performance, assessment tools, advanced automation, and an enhanced user experience.... Read more

Nuclear medicine

view channel

Clinical Study Shows Added Value of Amyloid PET Imaging in the Diagnosis and Treatment of Dementia

Early-onset dementia patients could benefit from a new PET imaging agent developed by a major medical imaging vendor. The results of a clinical study showing the effectiveness of the amyloid PET imaging agent were presented at the Alzheimer’s Association International Conference (AAIC 2015) in Washington DC (USA).... Read more

General/Advanced Imaging

view channel
Image: Illustration of a new technique using Optical Coherence Tomography that could help surgeons differentiate a human brain tumor, red, from surrounding noncancerous tissue, green (Photo courtesy of  Carmen Kut, Jordina Rincon-Torroella, Xingde Li and Alfredo Quinones-Hinojosa/Johns Hopkins Medicine).

Imaging Technique Helps Safer and More Effective Removal of Brain Tumors

Researchers at the Johns Hopkins University have demonstrated a new imaging technology that could enable neurosurgeons to better differentiate between healthy and cancerous brain tissue and perform safer... Read more

Imaging IT

view channel
Image: The Arbor Solution M2150 medical workstation with 21.5\

Multifunction Workstation Screen Meets Critical Certification Standards for Medical Environments

A medical imaging equipment vendor has unveiled a new workstation with a 54.61 cm true flat screen designed for operating rooms, clinical stations, and Picture Archiving and Communications Systems (PACS).... Read more

Industry News

view channel

Guerbet Aims for Global Medical Imaging Leadership by Acquisition of Mallinckrodt’s CMDS Business

Guerbet (Paris, France) has announced a definitive agreement for the acquisition of the Contrast Media and Delivery Systems (CMDS) business of pharmaceutical giant Mallinckrodt (Chesterfield, Derbyshire, UK). The acquisition gave Guerbet and the CMDS unit combined pro-forma sales of nearly EUR 800 million in 2014, a... Read more
 
Copyright © 2000-2015 Globetech Media. All rights reserved.