Features | Partner Sites | Information | LinkXpress
Sign In
ElsMed
Ampronix
Agfa Healthcare

MRI Guidance Used in Brain Cancer Drug Injection Procedure

By Medimaging International staff writers
Posted on 19 Aug 2013
Image: Using MRI navigation, Dr. Chen injects an investigational gene therapy directly into a brain tumor (Photo courtesy of University of California, San Diego Health Sciences).
Image: Using MRI navigation, Dr. Chen injects an investigational gene therapy directly into a brain tumor (Photo courtesy of University of California, San Diego Health Sciences).
Image: The ClearPoint SmartFrame device is a single-use, disposable trajectory frame that is MRI-compatible and enables the MRI-guided alignment and insertion of devices used during ClearPoint procedures (Photo courtesy of MRI Interventions).
Image: The ClearPoint SmartFrame device is a single-use, disposable trajectory frame that is MRI-compatible and enables the MRI-guided alignment and insertion of devices used during ClearPoint procedures (Photo courtesy of MRI Interventions).
Neurosurgeons in California are among the first in the world to utilize real-time magnetic resonance imaging (MRI) guidance for delivery of gene therapy as a potential treatment for brain tumors. Using MRI navigational technology, neurosurgeons can inject Toca 511 (vocimagene amiretrorepvec), a unique investigational gene therapy, directly into a brain tumor. This new application offers a precise way to deliver a therapeutic virus designed to make the tumor vulnerable to cancer-killing drugs.

“With chemotherapy, just about every human cell is exposed to the drug’s potential side-effects. By using the direct injection approach, we believe we can limit the presence of the active drug to just the brain tumor and nowhere else in the body,” said Clark Chen, MD, PhD, chief of stereotactic and radiosurgery and vice-chairman of neurosurgery University of California (UC) San Diego School of Medicine (USA). “With MRI, we can see the tumor light up in real time during drug infusion. The rest of the brain remains unaffected so the risk of the procedure is minimized.”

Toca 511 is a retrovirus engineered to selectively replicate in cancer cells, such as glioblastomas. Toca 511 generates an enzyme that converts an antifungal drug, flucytosine (5-FC), into the anticancer drug 5-fluorouracil (5-FU). After the injection of Toca 511, the patients are treated with an investigational extended-release oral formulation of 5-FC called Toca FC. Cancer cell killing takes place when 5-FC comes into contact with cells infected with Toca 511.

“Inevitably, almost all glioblastoma patients fail currently available therapy. The challenge, in part, is knowing if current drugs are actually penetrating the tumor. This MRI-guided approach will help us deliver this drug into the tumor directly to see if the drug is working,” said Santosh Kesari, MD, PhD, lead investigator and director of neuro-oncology at UC San Diego Moores Cancer Center (USA). “This approach may lead to new treatment options for patients battling several other types of brain cancers.”

Earlier research using gene therapy to treat brain cancer was mostly limited by the failure in delivering the drug into the brain. Under normal conditions, the brain is protected by the blood-brain barrier but this natural defense mechanism also prevents drugs from reaching the cancer cells in patients with brain tumors. Fortunately, 5-FC crosses the blood-brain barrier, and direct injection of Toca 511 into the tumor provides a means to selectively generate chemotherapy within the tumor mass.

To ensure that the adequate amount of Toca 511 is delivered to the region of the tumor, neurosurgeons at UC San Diego Health System utilize state-of-the art MRI guidance, called ClearPoint, to track the delivery and injection processes in real time. The MRI-guided process provides visual validation that the desired amount of drug is delivered into the tumor and provides physicians the ability to make adjustments to optimize the location of drug delivery. The Clearpoint technology was developed by MRI Interventions (Memphis, TN, USA).

Participants in this clinical trial must be 18 years or older; have a single, recurrent Grade 3 or 4 glioma; and have had prior surgery, radiation, and chemotherapy. The MRI-based procedure is minimally invasive and all participants of the study were discharged from the hospital one day after surgery and resumed their normal daily activity.

The phase 1 trial is evaluating the safety and tolerability of Toca 511 in combination with Toca FC (5-FC, extended-release tablets), and is being developed by Tocagen, Inc. (San Diego, CA, USA).

Related Links:

University of California, San Diego Moores Cancer Center
Tocagen
MRI Interventions



Channels

Radiography

view channel
Image: Whole body images of a mouse before and after nanoparticles injections. Signal loss in the liver and the spleen due to the accumulation of iron from the nanoparticles is indicated by the red arrows. (Photo courtesy of Imperial College London).

Self-Assembling Nanoparticles Could Improve Cancer Diagnosis

Innovative nanoparticles boost the effectiveness of magnetic resonance imaging (MRI) scanning by specifically seeking out receptors that are found in cancerous cells. Developed by researchers at Imperial... Read more

Ultrasound

view channel
Image: The Vivid T8 cardiovascular ultrasound system offers quantitative features such as stress echo and transesophageal echocardiography (TEE) capabilities (Photo courtesy of GE Healthcare).

Mobile, Cardiovascular Ultrasound Features Stress Echo and Transesophageal Echocardiography Capabilities

A 58.5-kg mobile cardiovascular ultrasound system features innovative quantitative features such as stress echo, and transesophageal echocardiography (TEE) capabilities, designed for healthcare providers... Read more

Nuclear medicine

view channel

Proton Therapy Has Better Outcome over IMRT for Advanced Head and Neck Cancers

Radiation oncologists compared the world’s literature on outcomes of proton beam therapy in the treatment of a range of advanced head and neck cancers of the skull base compared to intensity-modulated radiation therapy (IMRT) and found that proton beam therapy significantly improved disease-free survival and tumor control... Read more

General/Advanced Imaging

view channel
Image: Participant fitted with fNIRS headgear (Photo courtesy of University of Pittsburgh Schools of the Health Sciences).

Portable Optical Imaging Tool Designed for Concussion Evaluation

Researchers have demonstrated that a portable, low-cost optical imaging application is useful in evaluation of concussions. Two separate research projects, published recently, represent important steps... Read more

Imaging IT

view channel

Enterprise Imaging and Content Management Technology Collaboration Designed to Optimize the Electronic Health Record

A joint solution developed for the US market provides multi-media, electronic content management for electronic health records (EHRs). The system provides real-time access to a patient’s full medical history across the hospital enterprise, enhancing decision-making and healthcare while lowering costs. The integration... Read more

Industry News

view channel

Hosting and Distribution Collaboration Established to Provide Radiation Dose Monitoring

PHS Technologies Group, LLC (Scottsdale, AZ, USA), a unit of PACSHealth, LLC, and a developer of software that monitors patient exposure to ionizing radiation, reported that Dell Healthcare and Life Sciences (Round Rock, TX, USA) will become a marketing, distribution, and hosting partner for its DoseMonitor OnLine software.... Read more
 
Copyright © 2000-2014 Globetech Media. All rights reserved.