Features | Partner Sites | Information | LinkXpress
Sign In
Ampronix
Schiller
ElsMed

New Neuroimaging Research Could Change Treatment for Down Syndrome, Other Genetic Disorders

By Medimaging International staff writers
Posted on 19 Aug 2013
Cutting-edge imaging research may provide new applications in treatment of Down syndrome and other genetic disorders.

For two years, neuroscientists from the University of Utah (Salt Lake City; USA) examined the brains of 15 individuals with Down syndrome and compared their functional magnetic resonance imaging (fMRI) brain images with the brains of 15 healthy control individuals. They found significant differences in the brain images of individuals with Down syndrome—data that could change the way the disorder is treated in the future, according to Julie R. Korenberg, MD, PhD, lead investigator for the Down syndrome study and director of the University of Utah’s USTAR Center for Integrated Neurosciences and Human Behavior.

“It opens up a whole new world of possibilities for accelerating therapeutics with Down syndrome and for other developmental disorders,” Dr. Korenberg stated about the study. “Up until now, there was no functional imaging of Down syndrome and we knew we needed it. To have this team of people that are taking fundamental neuroscience and applying it to imaging—it is unprecedented.”

The research idea in itself was innovative, according to Jeff Anderson, MD, PhD, first author of the study, which was published June 2013 in the online journal NeuroImage: Clinical. “It turns out that Down syndrome, in spite of being an incredibly common disorder, has been almost completely ignored by the scientific community in terms of brain imaging,” said Dr. Anderson. “We set out to do a project where we recorded the brain function of people with Down syndrome. What we found were some pretty striking abnormalities. It looks like there is massive overconnectivity in the brains of individuals with Down syndrome. These are larger differences by an order of magnitude than we’re seeing in autism or in other disorders. In addition, we’re also seeing that there are some places in the brain that are underconnected—areas that are far apart and are part of networks in the brain where regions in a healthy brain work together to perform tasks.”

Dr. Anderson described the new findings as creating a “wiring diagram” of the Down syndrome brain. The brain consists of cells, most of which are on the brain’s surface and are networked together in different ways like a circuit. Areas on the surface of the brain are where all the action is and most of the middle of the brain is where all the wires between the cells exist. What researchers have developed with brain imaging allows them to measure quantitatively how strong “wiring” is between any two points in the brain, according to Dr. Anderson.

Researchers for the first time will now have a way to gauge how and if a specific type of therapy is having positive results for a Down syndrome patient. “One of the troubles in getting therapies to work in a disorder like Down syndrome is we don’t have a good way of testing to see if they’re working. If you can measure quantitatively what is abnormal in the brain of someone with Down syndrome, if you have a medication you think might work, you can give them a medication and after a short period of time you can, using brain imaging, see if it’s changing the abnormality,” Dr. Anderson said. “Like a lot of problems in science, the real problem is just getting something you can measure. It’s like taking a thread from a tapestry that you can hold onto and pull. Once you have the foothold, you can keep pulling and pulling and the whole picture has unraveled and you can understand what’s going on.”

The new study is part of a larger study taking place at the University of Utah. The broader study is now in its second year and funded by the US National Institute of Child Health and Developmental Disabilities. Dr. Korenberg oversaw the study, which is part of a larger mission that she leads at the Brain Institute to research the molecular genetics of mental retardation.

In the new study on Down syndrome brain imaging, researchers also compared Down syndrome patients with brain images from those diagnosed with autism and other genetic disorders. The research will clear the way for further study into the brain and genetics.

“What we can now say is that those genes on chromosome 21 alter the development and function of the brain in particular ways,” Dr. Korenberg said. “We’re beginning to not just sort through, but to unravel the mysteries of how the brain develops and how the brain functions and what the genetic basis of that function is. And that’s very exciting.”

Related Links:

University of Utah




Channels

Radiography

view channel

Healthcare Costs Could Be Cut by More Appropriate Use of Cardiac Stress Imaging

In new research, investigators concluded that overuse of cardiac stress testing using advanced imaging technology has led to increasing healthcare costs in the United States and unnecessary radiation exposure to patients. Researchers from the New York University Langone Medical Center (NYU; New York, NY, USA), in... Read more

Ultrasound

view channel
Image: Leading German anesthetists Drs. Wolf Armbruster, Rüdiger Eichholz, and Thomas Notheisen have collaborated to develop the Armbruster Eichholz Notheisen (AEN) training concept for ultrasound-guided regional anesthesia (Photo courtesy of Management and Krankenhaus).

Point-of-Care Ultrasound Training Program Established for Regional Anesthesiologists

Regional anesthesia specialists have developed an innovative ultrasound training program. Leading German anesthetists Drs. Wolf Armbruster, Rüdiger Eichholz, and Thomas Notheisen have collaborated to... Read more

Nuclear medicine

view channel
Image: The ProBeam system treatment room (Photo courtesy of Varian Medical Systems).

Five Proton Therapy Treatment Rooms Plus System Upgrade Deployed at Scripps Proton Therapy Center

An upgrade of a proton system will improve workflow at a US proton therapy center, enabling the use of the fixed-beam treatment rooms as well as more diverse patient-positioning devices.... Read more

General/Advanced Imaging

view channel
Image: A collaborative effort between EPFL, CNRS, ENS Lyon, CPE Lyon, and ETH Zürich has led to the development of a novel approach that can considerably improve the capabilities of medical imaging with safer procedures for the patient (Photo courtesy of EPFL - Ecole Polytechnique Fédérale de Lausanne).

Collaboration to Make Diagnostic Medical Imaging Less Hazardous Using Hyperpolarization Agents

A collaborative effort by scientists has led to the development of an innovative strategy that can considerably improve the capabilities of medical imaging with safer procedures for the patient.... Read more

Imaging IT

view channel

Tabbed Barcodes and Management System Software Designed to Help Apron Tracking to Improve Radiology Inventory Management

A web-based inventory management system has been designed to link each radiology apron with a distinct barcode ID. As a cloud-based, decision support system, staff can track, audit, and maintain aprons using data sorted by department, area, and garment type. Healthcare personnel can see details on individual inspections... Read more

Industry News

view channel

Global Partnership Provides Treatment Planning Support for Modulated Arc Radiotherapy

Varian Medical Systems (Palo Alto, CA, USA) Eclipse treatment planning software can now be used to plan modulated arc radiotherapy (mARC) treatments at sites using Siemens Healthcare (Erlangen, Germany) medical linear accelerators. Varian Medical Systems and Siemens Healthcare presented their range of solutions that... Read more
 
Copyright © 2000-2014 Globetech Media. All rights reserved.