Features Partner Sites Information LinkXpress
Sign In

MRI Technique Transforms Imaging of the Beating Heart

By Medimaging International staff writers
Posted on 02 May 2011
Print article
Image: Magnetic resonance image (MRI) of a beating heart (Photo courtesy of the Berlin Ultrahigh Field Facility / Charité-Universitätsmedizin Berlin).
Image: Magnetic resonance image (MRI) of a beating heart (Photo courtesy of the Berlin Ultrahigh Field Facility / Charité-Universitätsmedizin Berlin).
Images generated in one of the world's most powerful magnetic resonance imaging (MRI) systems provide much higher detail than cardiac images typically generated in current clinical practice.

The ultra-high field application permits a remarkable delineation between blood and heart muscle. Even subtle anatomic structures are made clearly visible. The new technology has the potential to advance the capabilities of cardiac research and care because cardiac malfunctions can be diagnosed, treated, and monitored at a much earlier point in disease progression.

For cardiac imaging in ultrahigh fields new versions of multichannel transmit and receive antennas--so-called radiofrequency coils--were developed at the Berlin Ultrahigh Field Facility (BUFF; Germany) located at Campus Buch. For this purpose a joint collaboration between the Charité-Universitätsmedizin Berlin, the Max Delbrück Center for Molecular Medicine (MDC; Berlin, Germany), the German Metrology Institute (Braunschweig, Germany), and Siemens Healthcare (Erlangen, Germany) was initiated.

To make use of the capacity and traits of the strong magnetic field, a cutting-edge triggering device was developed to synchronize cardiac imaging with heart motion. This approach eliminates mis-synchronization frequently encountered with traditional triggering devices and therefore helps to generate sharp cardiac images, a feature that might be compared with sport macros used in digital photography.

"We correlate the image exposure with the heartbeat," explained the investigator of the study, Prof. Thoralf Niendorf, whose research was published in the March 2011 issue of the Journal for Magnetic Resonance Imaging. "Our procedure is immune to interference with strong magnetic fields so that we can compensate for the motion of the heart which results in high image quality free of cardiac motion induced blurring and artifacts."

The Berlin-based team, led by Prof. Thoralf Niendorf, Prof. Jeanette Schulz-Menger from the Charité, and Dr. Bernd Ittermann from the German Metrology Institute, used the new technologies to derive for the first time a clearly defined image of the beating heart in a magnetic field with a strength of 7.0 Tesla.

This advancement in technology culminated in images of the beating heart with a spatial resolution that is by far superior to that previously available, and which might come close to turning a 10 megapixel digital camera into a 50 megapixel digital camera. The innovative technology customized for cardiac MRI together with the quality of the anatomic and functional images have created excitement among the international imaging community. The first clinical findings and experiences were very encouraging, according to the researchers, and are the driving force for broader clinical studies.

Related Links:

Berlin Ultrahigh Field Facility
Charité -Universitätsmedizin Berlin
Siemens Healthcare

Print article
Medical Imaging Innovations



view channel
Image: New Scenaria SE 64/128-slice Computed Tomography Scanner from Hitachi Medical Systems America (Photo courtesy of Business Wire).

Two new 64/128-Slice CT Scanners Cleared by the FDA

A major diagnostic imaging equipment provider has announced US FDA clearance of two new 64/128-slice Computed Tomography (CT) scanners. The Food and Drug Administration (FDA; Silver Spring, MD, USA)... Read more


view channel

Fast, Noninvasive Assessment of Chronic Liver Disease Announced as Alternative to Biopsies

A leading ultrasound imaging vendor has presented the clinical benefits of its innovative technology for noninvasive assessment of the severity of liver fibrosis, at the Liver Meeting 2015, in San Francisco (CA, USA). Researchers have published more than 60 items on the reliability and effectiveness of the new technology.... Read more

Nuclear medicine

view channel
Image: Glioblastoma in a PET scanner with (left) and without (right) the YY146 marker (Photo courtesy of Weibo Cai, WISC).

Antibody Cancer Marker Causes Tumors to Light Up

A novel marker attaches to a molecule on highly aggressive brain cancer, resulting in glioblastoma tumor tissue being easily identified in a positron emission tomography (PET) scanner. Developed by... Read more

Imaging IT

view channel
Image: 3D scan a child’s heart born with congenital heart defects (Photo courtesy of the Phoenix Children’s Hospital).

3D Modeling System Accurately Predicts Pediatric Donor Heart Volumes

A new three dimensional (3D) computer modeling system may more accurately identify the best donor heart for a pediatric transplant patient. To develop the new 3D system, researchers at Arizona State... Read more

Industry News

view channel

Long-Term Strategic Managed Medical Equipment Services Partnership Announced

An 18-year strategic collaboration agreement, worth CAD 300 million, between a major medical imaging vendor and the Southwest York Region of Ontario in Canada, has been announced. The partnership is for managed equipment services to help advance medical technology in the Southwest York region, and to expand the accessibility... Read more
Copyright © 2000-2015 Globetech Media. All rights reserved.