Features | Partner Sites | Information | LinkXpress
Sign In
Schiller
ElsMed
Ampronix

MRI Technique Transforms Imaging of the Beating Heart

By Medimaging International staff writers
Posted on 02 May 2011
Image: Magnetic resonance image (MRI) of a beating heart (Photo courtesy of the Berlin Ultrahigh Field Facility / Charité-Universitätsmedizin Berlin).
Image: Magnetic resonance image (MRI) of a beating heart (Photo courtesy of the Berlin Ultrahigh Field Facility / Charité-Universitätsmedizin Berlin).
Images generated in one of the world's most powerful magnetic resonance imaging (MRI) systems provide much higher detail than cardiac images typically generated in current clinical practice.

The ultra-high field application permits a remarkable delineation between blood and heart muscle. Even subtle anatomic structures are made clearly visible. The new technology has the potential to advance the capabilities of cardiac research and care because cardiac malfunctions can be diagnosed, treated, and monitored at a much earlier point in disease progression.

For cardiac imaging in ultrahigh fields new versions of multichannel transmit and receive antennas--so-called radiofrequency coils--were developed at the Berlin Ultrahigh Field Facility (BUFF; Germany) located at Campus Buch. For this purpose a joint collaboration between the Charité-Universitätsmedizin Berlin, the Max Delbrück Center for Molecular Medicine (MDC; Berlin, Germany), the German Metrology Institute (Braunschweig, Germany), and Siemens Healthcare (Erlangen, Germany) was initiated.

To make use of the capacity and traits of the strong magnetic field, a cutting-edge triggering device was developed to synchronize cardiac imaging with heart motion. This approach eliminates mis-synchronization frequently encountered with traditional triggering devices and therefore helps to generate sharp cardiac images, a feature that might be compared with sport macros used in digital photography.

"We correlate the image exposure with the heartbeat," explained the investigator of the study, Prof. Thoralf Niendorf, whose research was published in the March 2011 issue of the Journal for Magnetic Resonance Imaging. "Our procedure is immune to interference with strong magnetic fields so that we can compensate for the motion of the heart which results in high image quality free of cardiac motion induced blurring and artifacts."

The Berlin-based team, led by Prof. Thoralf Niendorf, Prof. Jeanette Schulz-Menger from the Charité, and Dr. Bernd Ittermann from the German Metrology Institute, used the new technologies to derive for the first time a clearly defined image of the beating heart in a magnetic field with a strength of 7.0 Tesla.

This advancement in technology culminated in images of the beating heart with a spatial resolution that is by far superior to that previously available, and which might come close to turning a 10 megapixel digital camera into a 50 megapixel digital camera. The innovative technology customized for cardiac MRI together with the quality of the anatomic and functional images have created excitement among the international imaging community. The first clinical findings and experiences were very encouraging, according to the researchers, and are the driving force for broader clinical studies.

Related Links:

Berlin Ultrahigh Field Facility
Charité -Universitätsmedizin Berlin
Siemens Healthcare



Channels

Radiography

view channel

Analysis Tool Shows Proton Therapy Less Expensive Than IMRT for Advanced Head and Neck Cancers

The episodic cost of care using intensity-modulated proton therapy (IMPT) in advanced stage head and neck cancer is less expensive than intensity-modulated radiotherapy (IMRT), according to new findings. The new proof-of-concept study uses a cost analysis tool that can be used to outline the value of competing healthcare... Read more

Nuclear medicine

view channel

PET Imaging Reveals Brain Benefits from Weight Loss After Bariatric Surgery

Imaging studies revealed that weight loss surgery has been found to suppress changes in brain metabolism associated with obesity and improve cognitive function involved in planning, strategizing, and organizing. Therefore, researchers have hypothesized that a specific surgical procedure could reduce risk of Alzheimer’s... Read more

General/Advanced Imaging

view channel
Image: From left, Guy Genin, PhD, John Boyle and Stavros Thomopoulos, PhD, watch as a sample is exposed to stress and force. They have developed algorithms that may lead to the ability to identify weak spots in tendons, muscles and bones (Photo courtesy of Washington University in St. Louis).

Image Analysis Algorithms Devised to Find Weak Spots in Muscles, Tendons, and Bones prone to Tearing, Breaking

Researchers have developed algorithms to detect weak spots in muscles, tendons, and bones predisposed to tearing or breaking. The technology, which needs to be further refined before it is used in patients,... Read more

Imaging IT

view channel

Interactive Dashboard and Visualization Tool Designed for Oncologists

A new tool has been developed to help users of an information system for radiation oncology to analyze data and use metrics to help make more informed decisions. Varian Medical Systems (Palo Alto CA, USA), a developer of cancer treatment technology and informatics software for managing comprehensive cancer clinics, will... Read more

Industry News

view channel

USD 12 Billion Out of Total Spent on Medical Imaging Squandered in the US

The United States wastes close to USD 12 billion on unnecessary medical imaging yearly, according to a new survey of 196 hospital leaders. Smart data company peer60 (American Fork, UT, USA) surveyed 196 healthcare leaders about medical imaging in less than two weeks and found a number of reasons for the squandered resources.... Read more
 
Copyright © 2000-2014 Globetech Media. All rights reserved.