Features | Partner Sites | Information | LinkXpress
Sign In
ElsMed
Schiller
Ampronix

MRI Technique Transforms Imaging of the Beating Heart

By Medimaging International staff writers
Posted on 02 May 2011
Image: Magnetic resonance image (MRI) of a beating heart (Photo courtesy of the Berlin Ultrahigh Field Facility / Charité-Universitätsmedizin Berlin).
Image: Magnetic resonance image (MRI) of a beating heart (Photo courtesy of the Berlin Ultrahigh Field Facility / Charité-Universitätsmedizin Berlin).
Images generated in one of the world's most powerful magnetic resonance imaging (MRI) systems provide much higher detail than cardiac images typically generated in current clinical practice.

The ultra-high field application permits a remarkable delineation between blood and heart muscle. Even subtle anatomic structures are made clearly visible. The new technology has the potential to advance the capabilities of cardiac research and care because cardiac malfunctions can be diagnosed, treated, and monitored at a much earlier point in disease progression.

For cardiac imaging in ultrahigh fields new versions of multichannel transmit and receive antennas--so-called radiofrequency coils--were developed at the Berlin Ultrahigh Field Facility (BUFF; Germany) located at Campus Buch. For this purpose a joint collaboration between the Charité-Universitätsmedizin Berlin, the Max Delbrück Center for Molecular Medicine (MDC; Berlin, Germany), the German Metrology Institute (Braunschweig, Germany), and Siemens Healthcare (Erlangen, Germany) was initiated.

To make use of the capacity and traits of the strong magnetic field, a cutting-edge triggering device was developed to synchronize cardiac imaging with heart motion. This approach eliminates mis-synchronization frequently encountered with traditional triggering devices and therefore helps to generate sharp cardiac images, a feature that might be compared with sport macros used in digital photography.

"We correlate the image exposure with the heartbeat," explained the investigator of the study, Prof. Thoralf Niendorf, whose research was published in the March 2011 issue of the Journal for Magnetic Resonance Imaging. "Our procedure is immune to interference with strong magnetic fields so that we can compensate for the motion of the heart which results in high image quality free of cardiac motion induced blurring and artifacts."

The Berlin-based team, led by Prof. Thoralf Niendorf, Prof. Jeanette Schulz-Menger from the Charité, and Dr. Bernd Ittermann from the German Metrology Institute, used the new technologies to derive for the first time a clearly defined image of the beating heart in a magnetic field with a strength of 7.0 Tesla.

This advancement in technology culminated in images of the beating heart with a spatial resolution that is by far superior to that previously available, and which might come close to turning a 10 megapixel digital camera into a 50 megapixel digital camera. The innovative technology customized for cardiac MRI together with the quality of the anatomic and functional images have created excitement among the international imaging community. The first clinical findings and experiences were very encouraging, according to the researchers, and are the driving force for broader clinical studies.

Related Links:

Berlin Ultrahigh Field Facility
Charité -Universitätsmedizin Berlin
Siemens Healthcare



Channels

Radiography

view channel
Image: The AeroDR Premium is an extremely light cassette-type digital radiography detector with improved strength (Photo courtesy of Konica Minolta).

Cassette-Type Digital Radiography Detector Designed to Reduce Waiting Times

Key features of a new cassette-type digital radiography (DR) system includes an extremely light weight of 2.6 kg; improved load resistance and drop impact resistance; and reduced waiting time due to shortened... Read more

Ultrasound

view channel
Image: Purdue University researchers are using ultrasound images like this one to study abdominal aortic aneurysms, a potentially fatal condition that is the 13th leading cause of death in the United States (Photo courtesy of Purdue University/Weldon School of Biomedical Engineering).

Ultrasound Provides Insights into Abdominal Aortic Aneurysms

Researchers are assessing the effectiveness of the use of ultrasound to study lethal abdominal aortic aneurysms (AAAs), a bulging of the aorta that is typically fatal when it ruptures, and for which there... Read more

Nuclear medicine

view channel
Image: Symbia Evo Excel combines excellent SPECT image resolution and detector sensitivity with a small room size requirement thus designed to fit into almost any existing nuclear medicine exam room (Photo courtesy of Siemens Healthcare).

New SPECT System Scans Virtually Every Patient and Is Designed to Fit into Most Nuclear Medicine Exam Rooms

A new single photon emission computed tomography (SPECT) system combines image resolution and detector sensitivity with the smallest room size requirement in its class. Siemens Healthcare’s (Erlangen,... Read more

General/Advanced Imaging

view channel
Image: A collaborative effort between EPFL, CNRS, ENS Lyon, CPE Lyon, and ETH Zürich has led to the development of a novel approach that can considerably improve the capabilities of medical imaging with safer procedures for the patient (Photo courtesy of EPFL - Ecole Polytechnique Fédérale de Lausanne).

Collaboration to Make Diagnostic Medical Imaging Less Hazardous Using Hyperpolarization Agents

A collaborative effort by scientists has led to the development of an innovative strategy that can considerably improve the capabilities of medical imaging with safer procedures for the patient.... Read more

Imaging IT

view channel
Image: The Coronis Uniti diagnostic image display supports PACS and breast imaging in color and grayscale (Photo courtesy of Barco).

Diagnostic Image Display Designed for Both PACS and Breast Imaging

The first diagnostic display designed for both picture archiving and communication systems (PACS) and breast imaging provides excellent image quality, inventive productivity features, and a focus on ergonomics.... Read more

Industry News

view channel

Global Partnership Provides Treatment Planning Support for Modulated Arc Radiotherapy

Varian Medical Systems (Palo Alto, CA, USA) Eclipse treatment planning software can now be used to plan modulated arc radiotherapy (mARC) treatments at sites using Siemens Healthcare (Erlangen, Germany) medical linear accelerators. Varian Medical Systems and Siemens Healthcare presented their range of solutions that... Read more
 
Copyright © 2000-2014 Globetech Media. All rights reserved.