Features | Partner Sites | Information | LinkXpress
Sign In
ElsMed
Ampronix
Schiller

Hidden Data Behind Imaging Scans for Cancer May offer New Radiotherapy Strategies

By Medimaging International staff writers
Posted on 30 Jul 2014
Information hidden in imaging tests could help clinicians more effectively choose the radiation therapy dose needed to kill tumors, suggests a study of more than 300 cancer patients.

The research, to be presented at the 56th annual meeting of the American Association of Physicists in Medicine (AAPM), held during July 28 to August 1, 2014, in Austin, TX, USA, is the largest study to date to use radiomics—extracting statistical data from images and other measurements—to help predict the probable progression of cancer or its response to treatment based on positron emission tomography (PET) imaging scans of patients with non-small-cell lung cancer and head and neck cancer.

“Currently, there is a one-size-fits-all process for selecting radiation therapy doses, which might be too much for some patients and not enough for others,” said Joseph Deasy, PhD, senior author of the study and chair of the department of medical physics at Memorial Sloan-Kettering Cancer Center (New York, NY, USA). “Radiomics will help us know when we can turn down the treatment intensity with confidence, knowing we can still control the disease.”

In the study, researchers performed PET scanning in 163 non-small-cell lung cancer patients and 174 head and neck cancer patients before and after treatment. They extracted a range of information from each tumor, including the intensity value of the PET image, the roughness of the image, and other information, such as how round the tumor was. In PET, the brighter an area is, the higher the intensity, revealing that the tumor is consuming a greater amount of energy from the injected radioactive glucose substitute tracer.

Comparing the data gathered from the before and after scans to how the patient fared—including whether the tumor shrank or how long the patient survived—researchers can create models that will help direct future therapy. In this study, for instance, researchers determined that lung tumors that have a higher uptake of the tracer need to be treated with a higher dose of radiation than is typically prescribed.

“Standard protocol today is to only use PET imaging to define the extent of a tumor to be treated,” said Dr. Deasy. “Based on the information from this study, the data would be extracted from those images and put into models that would tell the physician what dose was required to kill the tumor with a high probability.” He noted that radiomics is a team effort that requires good collaboration between physicians, physicists, and computer scientists.

Related Links:

Memorial Sloan-Kettering Cancer Center



Channels

Radiography

view channel

Analysis Tool Shows Proton Therapy Less Expensive Than IMRT for Advanced Head and Neck Cancers

The episodic cost of care using intensity-modulated proton therapy (IMPT) in advanced stage head and neck cancer is less expensive than intensity-modulated radiotherapy (IMRT), according to new findings. The new proof-of-concept study uses a cost analysis tool that can be used to outline the value of competing healthcare... Read more

MRI

view channel

Dyslexic Patients Shown to Have Disordered Network Connections in the Brain

Scientists conducted a whole-brain functional connectivity analysis of dyslexia using functional magnetic resonance imaging (fMRI), and revealed how brain activity is disordered in dyslexic patients. Dyslexia is a neurologic reading disability that occurs when the regions of the brain that process written language do... Read more

Nuclear medicine

view channel

PET Imaging Reveals Brain Benefits from Weight Loss After Bariatric Surgery

Imaging studies revealed that weight loss surgery has been found to suppress changes in brain metabolism associated with obesity and improve cognitive function involved in planning, strategizing, and organizing. Therefore, researchers have hypothesized that a specific surgical procedure could reduce risk of Alzheimer’s... Read more

General/Advanced Imaging

view channel
Image: From left, Guy Genin, PhD, John Boyle and Stavros Thomopoulos, PhD, watch as a sample is exposed to stress and force. They have developed algorithms that may lead to the ability to identify weak spots in tendons, muscles and bones (Photo courtesy of Washington University in St. Louis).

Image Analysis Algorithms Devised to Find Weak Spots in Muscles, Tendons, and Bones prone to Tearing, Breaking

Researchers have developed algorithms to detect weak spots in muscles, tendons, and bones predisposed to tearing or breaking. The technology, which needs to be further refined before it is used in patients,... Read more

Industry News

view channel

USD 12 Billion Out of Total Spent on Medical Imaging Squandered in the US

The United States wastes close to USD 12 billion on unnecessary medical imaging yearly, according to a new survey of 196 hospital leaders. Smart data company peer60 (American Fork, UT, USA) surveyed 196 healthcare leaders about medical imaging in less than two weeks and found a number of reasons for the squandered resources.... Read more
 
Copyright © 2000-2014 Globetech Media. All rights reserved.