Features | Partner Sites | Information | LinkXpress
Sign In
Ampronix
Schiller
ElsMed

Hidden Data Behind Imaging Scans for Cancer May offer New Radiotherapy Strategies

By Medimaging International staff writers
Posted on 30 Jul 2014
Information hidden in imaging tests could help clinicians more effectively choose the radiation therapy dose needed to kill tumors, suggests a study of more than 300 cancer patients.

The research, to be presented at the 56th annual meeting of the American Association of Physicists in Medicine (AAPM), held during July 28 to August 1, 2014, in Austin, TX, USA, is the largest study to date to use radiomics—extracting statistical data from images and other measurements—to help predict the probable progression of cancer or its response to treatment based on positron emission tomography (PET) imaging scans of patients with non-small-cell lung cancer and head and neck cancer.

“Currently, there is a one-size-fits-all process for selecting radiation therapy doses, which might be too much for some patients and not enough for others,” said Joseph Deasy, PhD, senior author of the study and chair of the department of medical physics at Memorial Sloan-Kettering Cancer Center (New York, NY, USA). “Radiomics will help us know when we can turn down the treatment intensity with confidence, knowing we can still control the disease.”

In the study, researchers performed PET scanning in 163 non-small-cell lung cancer patients and 174 head and neck cancer patients before and after treatment. They extracted a range of information from each tumor, including the intensity value of the PET image, the roughness of the image, and other information, such as how round the tumor was. In PET, the brighter an area is, the higher the intensity, revealing that the tumor is consuming a greater amount of energy from the injected radioactive glucose substitute tracer.

Comparing the data gathered from the before and after scans to how the patient fared—including whether the tumor shrank or how long the patient survived—researchers can create models that will help direct future therapy. In this study, for instance, researchers determined that lung tumors that have a higher uptake of the tracer need to be treated with a higher dose of radiation than is typically prescribed.

“Standard protocol today is to only use PET imaging to define the extent of a tumor to be treated,” said Dr. Deasy. “Based on the information from this study, the data would be extracted from those images and put into models that would tell the physician what dose was required to kill the tumor with a high probability.” He noted that radiomics is a team effort that requires good collaboration between physicians, physicists, and computer scientists.

Related Links:

Memorial Sloan-Kettering Cancer Center



Channels

Radiography

view channel
Image: The AeroDR Premium is an extremely light cassette-type digital radiography detector with improved strength (Photo courtesy of Konica Minolta).

Cassette-Type Digital Radiography Detector Designed to Reduce Waiting Times

Key features of a new cassette-type digital radiography (DR) system includes an extremely light weight of 2.6 kg; improved load resistance and drop impact resistance; and reduced waiting time due to shortened... Read more

MRI

view channel
Image: MagLab’s 900 MHz magnet (Photo courtesy of FSU – Florida State University).

High Magnetic Field MRI Technology Provides Comprehensive Analysis of Strokes

A new, novel way to categorize the severity of a stroke, help in diagnosis, and assesse potential treatments has been demonstrated by US researchers. “Stroke affects millions of adults and children... Read more

Ultrasound

view channel
Image: Purdue University researchers are using ultrasound images like this one to study abdominal aortic aneurysms, a potentially fatal condition that is the 13th leading cause of death in the United States (Photo courtesy of Purdue University/Weldon School of Biomedical Engineering).

Ultrasound Provides Insights into Abdominal Aortic Aneurysms

Researchers are assessing the effectiveness of the use of ultrasound to study lethal abdominal aortic aneurysms (AAAs), a bulging of the aorta that is typically fatal when it ruptures, and for which there... Read more

Nuclear medicine

view channel
Image: Symbia Evo Excel combines excellent SPECT image resolution and detector sensitivity with a small room size requirement thus designed to fit into almost any existing nuclear medicine exam room (Photo courtesy of Siemens Healthcare).

New SPECT System Scans Virtually Every Patient and Is Designed to Fit into Most Nuclear Medicine Exam Rooms

A new single photon emission computed tomography (SPECT) system combines image resolution and detector sensitivity with the smallest room size requirement in its class. Siemens Healthcare’s (Erlangen,... Read more

General/Advanced Imaging

view channel
Image: A collaborative effort between EPFL, CNRS, ENS Lyon, CPE Lyon, and ETH Zürich has led to the development of a novel approach that can considerably improve the capabilities of medical imaging with safer procedures for the patient (Photo courtesy of EPFL - Ecole Polytechnique Fédérale de Lausanne).

Collaboration to Make Diagnostic Medical Imaging Less Hazardous Using Hyperpolarization Agents

A collaborative effort by scientists has led to the development of an innovative strategy that can considerably improve the capabilities of medical imaging with safer procedures for the patient.... Read more

Industry News

view channel

Global Partnership Provides Treatment Planning Support for Modulated Arc Radiotherapy

Varian Medical Systems (Palo Alto, CA, USA) Eclipse treatment planning software can now be used to plan modulated arc radiotherapy (mARC) treatments at sites using Siemens Healthcare (Erlangen, Germany) medical linear accelerators. Varian Medical Systems and Siemens Healthcare presented their range of solutions that... Read more
 
Copyright © 2000-2014 Globetech Media. All rights reserved.