Features | Partner Sites | Information | LinkXpress
Sign In
Schiller
RG Advertising
TeraRecon

Hidden Data Behind Imaging Scans for Cancer May offer New Radiotherapy Strategies

By Medimaging International staff writers
Posted on 30 Jul 2014
Information hidden in imaging tests could help clinicians more effectively choose the radiation therapy dose needed to kill tumors, suggests a study of more than 300 cancer patients.

The research, to be presented at the 56th annual meeting of the American Association of Physicists in Medicine (AAPM), held during July 28 to August 1, 2014, in Austin, TX, USA, is the largest study to date to use radiomics—extracting statistical data from images and other measurements—to help predict the probable progression of cancer or its response to treatment based on positron emission tomography (PET) imaging scans of patients with non-small-cell lung cancer and head and neck cancer.

“Currently, there is a one-size-fits-all process for selecting radiation therapy doses, which might be too much for some patients and not enough for others,” said Joseph Deasy, PhD, senior author of the study and chair of the department of medical physics at Memorial Sloan-Kettering Cancer Center (New York, NY, USA). “Radiomics will help us know when we can turn down the treatment intensity with confidence, knowing we can still control the disease.”

In the study, researchers performed PET scanning in 163 non-small-cell lung cancer patients and 174 head and neck cancer patients before and after treatment. They extracted a range of information from each tumor, including the intensity value of the PET image, the roughness of the image, and other information, such as how round the tumor was. In PET, the brighter an area is, the higher the intensity, revealing that the tumor is consuming a greater amount of energy from the injected radioactive glucose substitute tracer.

Comparing the data gathered from the before and after scans to how the patient fared—including whether the tumor shrank or how long the patient survived—researchers can create models that will help direct future therapy. In this study, for instance, researchers determined that lung tumors that have a higher uptake of the tracer need to be treated with a higher dose of radiation than is typically prescribed.

“Standard protocol today is to only use PET imaging to define the extent of a tumor to be treated,” said Dr. Deasy. “Based on the information from this study, the data would be extracted from those images and put into models that would tell the physician what dose was required to kill the tumor with a high probability.” He noted that radiomics is a team effort that requires good collaboration between physicians, physicists, and computer scientists.

Related Links:

Memorial Sloan-Kettering Cancer Center



Channels

MRI

view channel
Image: Construction Workers Building CUBRIC (Photo courtesy of Cardiff University).

New Brain Research Imaging Center Under Construction in Cardiff University

Cardiff University (Cardiff, UK) has begun building an advanced MR imaging technology center, with the help of Siemens Healthcare (Erlangen, Germany). The center will use the latest brain imaging and brain... Read more

Nuclear medicine

view channel

Construction of Australian Nuclear Medicine Production Plant Begins

The new facility is being built as part of the Australian Nuclear Science and Technology Organisation (ANSTO; NSW, Australia) Nuclear Medicine (ANM) project, and includes an investment of USD 168.8 by the Australian government. The ANM project also includes the construction of a Synroc plant for treatment of radioactive... Read more

General/Advanced Imaging

view channel
Image: Measuring the Magnetic Activity in the Brain of a Child, Using a MEG machine. (Photo courtesy of Children\'s Hospital of Philadelphia).

Study Suggests Language Delay Linked to Chromosome Deletion in Children with Neurological Disorders

A study found that children with neuro-developmental problems born with DNA duplications or deletions on part of chromosome 16, show measurable delays in their ability to process sound and language.... Read more

Industry News

view channel

Long-Term Contract for Telehealth Services Awarded by German Health Insurance Company

Almeda (Munich, Germany), a subsidiary of SHL Telemedicine (Tel Aviv, Israel), has won a public tender for an 8-year contract worth EUR 16–20 million offered by Barmer GEK (Wuppertal, Germany), a health insurance company, to provide telehealth services to clients insured at Barmer. Barmer GEK was already a long-term client... Read more
 

Events

05 Mar 2015 - 08 Mar 2015
Copyright © 2000-2015 Globetech Media. All rights reserved.