We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress
Sign In
Advertise with Us
GLOBETECH PUBLISHING LLC

Download Mobile App




Virtual Finger Helps Study 3D Images Faster

By MedImaging International staff writers
Posted on 23 Jul 2014
Print article
A new digital navigation technology allows users to sift through three-dimensional (3D) images more efficiently and comprehensively than previous technology.

The Virtual Finger (VF), developed at the Allen Institute for Brain Science (Seattle, WA, USA), aids scientists and researchers move through digital images of small structures, such as neurons and synapses, allowing them to “reach” into the 3D images displayed on the flat surface of their computer screens. When moving a cursor along the screen, the software recognizes whether the user is pointing to an object that is near, far, or somewhere in between, thus analyzing it without having to sift through many two-dimensional (2D) images to reach the correct level.

The VF software uses a family of “what you see is what you get” (WYSIWYG) computer algorithms that map inputs in the 2D plane of a computer screen to the 3D locations of biological entities in the volumetric space of a 3D image stack. The three types of objects produced with VF correspond to important structures found in typical fluorescent microscopic images: 3D points may mark locations of labelled cells or proteins, 3D curves may correspond to general vessel-like structures, and 3D regions of interest (ROI) may highlight specific cell populations or brain compartments.

Scientists at the Allen Institute are using the VF to improve detection of spikes from individual cells, and to better model the morphological structures of neurons. The technology is already being applied for instant 3D optical zoom-in imaging, 3D free-form optical microsurgery, and automated 3D reconstruction of neurons and similar biostructures, such as a projectome of a drosophila brain and studies the developing lung. The software and its applications were described in a study published on July 11, 2014, in Nature Communications.

“Using Virtual Finger could make data collection and analysis ten to 100 times faster, depending on the experiment,” said lead author Hanchuan Peng, PhD, associate investigator at the Allen Institute for Brain Science. “The software allows us to navigate large amounts of biological data in the same way that Google Earth allows you to navigate the world. It truly is a revolutionary technology for many different applications within biological science.”

Despite a number of advances on visualization of multidimensional image data and automated analysis of such data, a common bottleneck is the inability to efficiently explore the complicated 3D image content. This presents an obstacle for the unbiased, high-throughput and quantitative analysis of data and creates tremendous need for the development of new techniques that help explore 3D data directly and efficiently without expensive virtual reality devices.

Related Links:

Allen Institute for Brain Science


Gold Member
Solid State Kv/Dose Multi-Sensor
AGMS-DM+
Color Doppler Ultrasound System
DRE Crystal 4PX
Portable Radiology System
DRAGON ELITE & CLASSIC
New
Ultrasound Table
Ergonomic Advantage (EA) Line

Print article
Radcal

Channels

MRI

view channel
Image: Exablate Prime features an enhanced user interface and enhancements to optimize productivity (Photo courtesy of Insightec)

Next Generation MR-Guided Focused Ultrasound Ushers In Future of Incisionless Neurosurgery

Essential tremor, often called familial, idiopathic, or benign tremor, leads to uncontrollable shaking that significantly affects a person’s life. When traditional medications do not alleviate symptoms,... Read more

Nuclear Medicine

view channel
Image: The new SPECT/CT technique demonstrated impressive biomarker identification (Journal of Nuclear Medicine: doi.org/10.2967/jnumed.123.267189)

New SPECT/CT Technique Could Change Imaging Practices and Increase Patient Access

The development of lead-212 (212Pb)-PSMA–based targeted alpha therapy (TAT) is garnering significant interest in treating patients with metastatic castration-resistant prostate cancer. The imaging of 212Pb,... Read more

General/Advanced Imaging

view channel
Image: The Tyche machine-learning model could help capture crucial information. (Photo courtesy of 123RF)

New AI Method Captures Uncertainty in Medical Images

In the field of biomedicine, segmentation is the process of annotating pixels from an important structure in medical images, such as organs or cells. Artificial Intelligence (AI) models are utilized to... Read more
Copyright © 2000-2024 Globetech Media. All rights reserved.