Features | Partner Sites | Information | LinkXpress
Sign In
AMPRONIX
TERARECON, INC.
SCHILLER AG

New Hand-Held OCT Device to Simplify Early Detection of Retinal Disease

By Medimaging International staff writers
Posted on 31 Dec 2013
Image: Power grip style (A-B) and camcorder style (C-D) designs of the prototype OCT scanner. Both acquire 3D OCT images of the retina (Photo courtesy of Biomedical Optics Express).
Image: Power grip style (A-B) and camcorder style (C-D) designs of the prototype OCT scanner. Both acquire 3D OCT images of the retina (Photo courtesy of Biomedical Optics Express).
Image: A high-definition OCT image of the retina allows clinicians to noninvasively visualize the 3D structure of key regions, such as the macula (region near the fovea) and optic nerve head, to screen for signs of disease pathology. Shown here is a wide field view (A) as well as detailed vertical cross-sections (B-C-D) and a circular cross-section (E) (Photo courtesy of Biomedical Optics Express.)
Image: A high-definition OCT image of the retina allows clinicians to noninvasively visualize the 3D structure of key regions, such as the macula (region near the fovea) and optic nerve head, to screen for signs of disease pathology. Shown here is a wide field view (A) as well as detailed vertical cross-sections (B-C-D) and a circular cross-section (E) (Photo courtesy of Biomedical Optics Express.)
A novel hand-held optical device quickly scans a patient’s entire retina and so could aid in detecting early signs of a host of retinal diseases, including diabetic retinopathy, glaucoma, and macular degeneration.

A team at the Massachusetts Institute of Technology (MIT; Cambridge, MA, USA) describes their new ophthalmic-screening instrument in a report by Lu, C.D. et al., published by The Optical Society (Washington DC, USA), December 20, 2013, in the journal Biomedical Optics Express. Although others have created hand-held devices using similar technology, the new design is the first to combine cutting-edge technologies such as ultrahigh-speed 3D imaging, a tiny micro-electromechanical systems (MEMS) mirror for scanning, and a technique to correct for unintentional movement by the patient. These innovations should allow clinicians to collect comprehensive data with just one measurement.

Many eye diseases should be detected and treated long before any visual symptoms arise, but few people visit eye specialists regularly. The MIT group, in collaboration with the University of Erlangen and Praevium/Thorlabs, has developed this portable instrument to improve public access to eye care. "Hand-held instruments can enable screening a wider population outside the traditional points of care," said Prof. James Fujimoto, MIT. They can be used at a primary-care physician's office or even in the developing world.

The instrument uses optical coherence tomography (OCT), which sends beams of infrared light into the eye and onto the retina. Echoes of this light return to the instrument, which uses interferometry to measure changes in the time delay and magnitude of the returning light echoes, revealing the cross-sectional tissue structure of the retina, similar to radar or ultrasound imaging. Tabletop OCT imagers have become a standard of care in ophthalmology, and current generation hand-held scanners are used for imaging infants and monitoring retinal surgery. The MIT group turned a typically large instrument into a portable size by using a MEMS mirror to scan the OCT imaging beam. The new device can acquire images comparable in quality to the conventional tabletop OCT instruments used by ophthalmologists.

To deal with the motion instability of a hand-held device, the instrument takes multiple 3D images at high speeds, scanning one particular volume of the eye many times but with different scanning directions. This makes it possible to correct for distortions due to motion of the operator’s hand or the subject’s eye.

The next step, said Prof. Fujimoto, is to evaluate the technology in clinical settings; however, the device is still expensive. "The hand-held platform allows the diagnosis or screening to be performed in a much wider range of settings,” said Prof. Fujimoto. He envisions that in the future hand-held OCT technology can be used in many other medical specialties beyond ophthalmology, such as in applications ranging from surgical guidance to military medicine.

Related Links:

Massachusetts Institute of Technology
The Optical Society



RADCAL
RTI ELECTRONICS AB
SuperSonic Imagine

Channels

MRI

view channel
Image: The quantitative character of the novel 3D technique on MR scans from a patient with primary liver cancer is demonstrated. Images A and B show the scan of the patient before being treated with chemoembolization. The new 3D technique helped quantify the volume and distribution of viable tumor tissue (shown in red and yellow colors). Images C and D demonstrate MR scans acquired after the treatment. The new 3D method helped the radiologists to quantify the vast central destruction of the tumor after the treatment (the dead tumor is represented by the blue color) (Photo courtesy of Johns Hopkins Medicine).

3D MRI Offers Improved Prediction of Survival After Chemotherapy for Liver Tumors

Researchers are using specialized three-dimensional (3D) magnetic resonance imaging (MRI) scanning technology to accurately measure living and dying liver tumor tissue in order to quickly show whether... Read more

Ultrasound

view channel
Image: Siemens Healthcare has launched the HELX Evolution, the newest iteration of its Acuson S range of ultrasound imaging systems (Photo courtesy of Siemens Healthcare).

Ultrasound Imaging System Enhancements Include High Definition Transducers, Sophisticated Elastography, and Tissue Strain Analysis

New features designed for a range of ultrasound systems include enhanced image quality with a large 21.5-inch liquid crystal diode (LCD) monitor, high definition (HD) transducers, optimized contrast agent... Read more

Nuclear medicine

view channel
Image: Sagittal section of brain PET image at four hours after 64CuCl2 injection with disulfiram or D-penicillamine in MD model mice (Photo courtesy of the RIKEN Center for Life Science Technologies).

PET Imaging Used to Assess Effectiveness of Menkes Disease Treatments

Japanese scientists are using positron emission tomography (PET) imaging to visualize the distribution of copper in the body using lab mice. Copper distribution is deregulated in a genetic disorder called... Read more

Imaging IT

view channel

Software Designed for the Assessment of Orthopedic Implant Fixation and Bone Segment Motion

Model-based roentgen stereophotogrammetric analysis (MBRSA) software has been developed for evaluation of orthopedic implant fixation and bone segment motion. The software is the first to measure the in vivo three-dimensional (3D) position and/or relative motion of metal implants, markers beads, and/or bone segments in... Read more

Industry News

view channel

Collaboration Expands Capacity for Proton Therapy Clinical Research and Patient Treatments

Varian Medical Systems (Palo Alto, CA, USA) and the Paul Scherrer Institute (PSI; Villigen PSI, Switzerland) are extending an existing collaboration in the field of proton therapy to offer patients more accurate cancer treatments using intensity-modulated proton therapy (IMPT). Under the agreement, Varian will also... Read more
 
Copyright © 2000-2014 Globetech Media. All rights reserved.