We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress
Sign In
Advertise with Us
GLOBETECH PUBLISHING LLC

Download Mobile App




Optical Metabolic Imaging Identifies Breast Cancer Subtypes, Early Treatment Response

By MedImaging International staff writers
Posted on 30 Oct 2013
Print article
Optical imaging technology, which measures metabolic activity in cancer cells, can accurately differentiate breast cancer subtypes, and it can detect responses to treatment as early as two days after therapy administration, according to recent research.

The study’s findings were published October 15, 2013, in Cancer Research, a journal of the American Association for Cancer Research. “The process of targeted drug development requires assays that measure drug target engagement and predict the response [or lack thereof] to treatment,” said Alex Walsh, a graduate student in the department of biomedical engineering at Vanderbilt University (Nashville, TN, USA). “We have shown that optical metabolic imaging [OMI] enables fast, sensitive, and accurate measurement of drug action. Importantly, OMI measurements can be made repeatedly over time in a live animal, which significantly reduces the cost of these preclinical studies.”

Human cells undergo extensive chemical reactions called metabolic activity to produce energy, and this activity is altered in cancer cells. Cancer cells’ metabolic activity changes when treated with anticancer drugs. OMI takes advantage of the fact that two molecules involved in cellular metabolism, called nicotinamide adenine dinucleotide (NADH) and flavin adenine dinucleotide (FAD), naturally emit fluorescence when exposed to specific forms of light. In this way, OMI generates distinctive signatures for cancer cells with a different metabolism and their responses to medications.

Dr. Walsh and coworkers used a custom-built, multiphoton microscope and coupled it with a titanium-sapphire laser that causes NADH and FAD to emit fluorescence. They employed specific filters to isolate the fluorescence emitted by these two molecules, and measured the ratio of the two as “redox ratio.” When they placed normal and cancerous breast cells under the microscope, OMI generated distinct signals for the two types of cells. OMI could also differentiate between estrogen receptor-positive, estrogen receptor-negative, HER2-positive, and HER2-negative breast cancer cells.

The researchers next examined the effect of the anti-HER2 antibody trastuzumab on three breast cancer-cell lines that respond differently to the antibody. They found that the redox ratios were significantly reduced in drug-sensitive cells after trastuzumab treatment but unaffected in the resistant cells. They then grew human breast tumors in mice and treated some of these with trastuzumab. When they imaged tumors in live mice, OMI demonstrated a difference in response between trastuzumab-sensitive and -resistant tumors as early as two days after the first dose of the antibody. Fluorodeoxyglucose-positron emission tomography (FDG-PET) imaging, in comparison, imaging, the conventional clinical metabolic imaging technique, could not measure any difference in response between trastuzumab-sensitive and -resistant tumors at any time point in the research, which lasted 12 days.

“Cancer drugs have profound effects on cellular energy production, and this can be harnessed by OMI to identify responding cells from nonresponding cells,” concluded Dr. Walsh. “We are hoping to develop a high-throughput screening method to predict the optimal drug treatment for a particular patient.”

Notably, OMI can be used on freshly excised tissues from patients; however, with additional refinements, it could be integrated in endoscopes for live imaging of human cancers, according to the investigators.

Related Links:

Vanderbilt University


Gold Member
Solid State Kv/Dose Multi-Sensor
AGMS-DM+
Dose Area Product Meter
VacuDAP
New
Portable X-Ray Unit
AJEX240H
Under Table Shield
3 Section Double Pivot Under Table Shield

Print article

Channels

Radiography

view channel
:	Image: The AI model could be a valuable adjunct to human radiologists in breast cancer diagnoses and risk prediction (Photo courtesy of 123RF)

AI Model Predicts 5-Year Breast Cancer Risk from Mammograms

Approximately 13% of U.S. women, or one in every eight, are predicted to develop invasive breast cancer over their lifetime, with 1 in 39 women (3%) succumbing to the illness, according to the American... Read more

Nuclear Medicine

view channel
Image: The AI system uses scintigraphy imaging for early diagnosis of cardiac amyloidosis (Photo courtesy of 123RF)

AI System Automatically and Reliably Detects Cardiac Amyloidosis Using Scintigraphy Imaging

Cardiac amyloidosis, a condition characterized by the buildup of abnormal protein deposits (amyloids) in the heart muscle, severely affects heart function and can lead to heart failure or death without... Read more

Imaging IT

view channel
Image: The new Medical Imaging Suite makes healthcare imaging data more accessible, interoperable and useful (Photo courtesy of Google Cloud)

New Google Cloud Medical Imaging Suite Makes Imaging Healthcare Data More Accessible

Medical imaging is a critical tool used to diagnose patients, and there are billions of medical images scanned globally each year. Imaging data accounts for about 90% of all healthcare data1 and, until... Read more

Industry News

view channel
Image: Samsung Medison CEO Mr. Yongkwan Kim and Bracco Imaging CEO Dr. Fulvio Renoldi Bracco endorsed a MoU agreement (Photo courtesy of Bracco Group)

Samsung and Bracco Enter Into New Diagnostic Ultrasound Technology Agreement

Samsung Medison (Seoul, South Korea) and Bracco Imaging (Milan, Italy) have entered into a Memorandum of Understanding (MoU) agreement to pioneer a new area for diagnostic ultrasound devices and contrast agents.... Read more
Copyright © 2000-2024 Globetech Media. All rights reserved.