Features | Partner Sites | Information | LinkXpress
My Account
Ampronix
VIEWORKS
Schiller

TOF PET Images Offer Improved Detection, Safer for Patients

By Medimaging International staff writers
Posted on 16 Mar 2011
For the first time, quantitative--not qualitative--data analysis has demonstrated that time-of-flight (TOF) positron emission tomography (PET) imaging scans can improve cancer detection. Research revealed that oncologic TOF fluorodeoxyglucose (FDG) PET scans yielded considerable improvements in lesion detection of lung and liver cancers over all contrasts and body mass indexes.

Traditional PET scans create images by detecting gamma rays produced by radioisotopes that are injected into the body. Although these conventional scans track where the gamma rays go, they do not gauge the time it takes for each gamma ray to reach the detector. TOF PET scans do take into account the travel time, which results in improved image signal-to-noise.
"[We] …aimed to objectively quantify the improvement in lesion detection that can be achieved with whole-body TOF FDG PET,” said Dr. Joel S. Karp, from the department of radiology, University of Pennsylvania (Philadelphia, USA), and one of the authors of the study, which was published in the March 2011 issue of the Journal of Nuclear Medicine. "In contrast with previously published studies that reported comparison of TOF and non-TOF PET using simulated data or measured data with physical phantoms, this study used whole-body patient data...”

To create a lesion-present-clinical-study while ensuring precise knowledge of the presence and location of each lesion, 10-mm spheric lesions were added to disease-free bed positions, yielding fused lesion-present studies. These studies appropriately corrected for the body's attenuation so that the presence or absence of the lesions was similar to that of actual patient studies. TOF PET scans were performed, and researchers used a numeric observer--as opposed to a human observer--to identify quickly a large number of conditions. The TOF PET images were compared to traditional PET images (the same data reconstructed without TOF information) to determine improvement in lesion detection as a function of lesion location, scan time, contrast and body mass index.

Improved lesion detection was seen in the TOF PET scans, with the greatest gains achieved in the shortest-acquisition studies and in the subjects with a BMI of 30 or more. Also of interest--the greatest gain in performance was achieved at the lowest lesion contrast and the smallest gain in performance at the highest lesion contrast.

Nuclear medicine technologists and physicians may be able to take advantage of the gain achieved with TOF PET to reduce scanning time, therefore increasing patient comfort and minimizing patient motion. They may also be able to reduce the injected radiopharmaceutical dose, thereby reducing the exposure of patients and health professionals to radiation.

Related Links:

University of Pennsylvania





Channels

Radiography

view channel

US FDA Issues Class 2 Device Recall of CT Scanners

The US Food and Drug Administration (FDA) issued a Class 2 Recall notice on April 1, 2015, for several Philips Healthcare (Best, The Netherlands) Computed Tomography (CT) scanners worldwide. According to the FDA, “Philips discovered that a software defect exists in the marketed product wherein the sign indication of... Read more

Ultrasound

view channel

Study Suggests Ultrasound Could Eliminate Breast Biopsies in Adolescent Girls

Results of a study published in the Journal of Ultrasound in Medicine in April 2015, indicate that ultrasound examinations could replace invasive excisional tissue biopsies for adolescent girls with breast lumps. The study was carried out by researchers at the Loyola University Health System (Maywood, IL, USA) and included... Read more

General/Advanced Imaging

view channel
Image: Measuring the Magnetic Activity in the Brain of a Child, Using a MEG machine. (Photo courtesy of Children\'s Hospital of Philadelphia).

Study Suggests Language Delay Linked to Chromosome Deletion in Children with Neurological Disorders

A study found that children with neuro-developmental problems born with DNA duplications or deletions on part of chromosome 16, show measurable delays in their ability to process sound and language.... Read more

Imaging IT

view channel
Image: A new imaging techniques to see how brain cancer cells (the darker gray on the bottom of the large image above) take in gold nanorod treatment (the small gray specks). The four magnified images on the right show how the cell takes up the treatment across a span of 30 seconds (Photo courtesy of VirginiaTech).

Novel Imaging Technique Visualizes Potential Cancer Treatments in Action

A new and innovative imaging technique for observing cancer treatments in brain tumor cells has been developed by researchers at the Virginia Tech Carilion Research Institute (Roanoke, VA, USA).... Read more

Industry News

view channel

Partnership to Extend Web and Mobile Image Access to Enterprise Patient Multimedia Manager

A partnership and distribution agreement has been agreed to integrate an enterprise multimedia Picture Archiving and Communication System (PACS) with an enterprise image viewing solution. The partnership will provide extended web and mobile access for clinicians to medical images and multimedia files from desktop computers,... Read more
 
Copyright © 2000-2015 Globetech Media. All rights reserved.