Features | Partner Sites | Information | LinkXpress
My Account
SCHILLER AG
AMPRONIX
TERARECON, INC.

TOF PET Images Offer Improved Detection, Safer for Patients

By Medimaging International staff writers
Posted on 16 Mar 2011
For the first time, quantitative--not qualitative--data analysis has demonstrated that time-of-flight (TOF) positron emission tomography (PET) imaging scans can improve cancer detection. Research revealed that oncologic TOF fluorodeoxyglucose (FDG) PET scans yielded considerable improvements in lesion detection of lung and liver cancers over all contrasts and body mass indexes.

Traditional PET scans create images by detecting gamma rays produced by radioisotopes that are injected into the body. Although these conventional scans track where the gamma rays go, they do not gauge the time it takes for each gamma ray to reach the detector. TOF PET scans do take into account the travel time, which results in improved image signal-to-noise.
"[We] …aimed to objectively quantify the improvement in lesion detection that can be achieved with whole-body TOF FDG PET,” said Dr. Joel S. Karp, from the department of radiology, University of Pennsylvania (Philadelphia, USA), and one of the authors of the study, which was published in the March 2011 issue of the Journal of Nuclear Medicine. "In contrast with previously published studies that reported comparison of TOF and non-TOF PET using simulated data or measured data with physical phantoms, this study used whole-body patient data...”

To create a lesion-present-clinical-study while ensuring precise knowledge of the presence and location of each lesion, 10-mm spheric lesions were added to disease-free bed positions, yielding fused lesion-present studies. These studies appropriately corrected for the body's attenuation so that the presence or absence of the lesions was similar to that of actual patient studies. TOF PET scans were performed, and researchers used a numeric observer--as opposed to a human observer--to identify quickly a large number of conditions. The TOF PET images were compared to traditional PET images (the same data reconstructed without TOF information) to determine improvement in lesion detection as a function of lesion location, scan time, contrast and body mass index.

Improved lesion detection was seen in the TOF PET scans, with the greatest gains achieved in the shortest-acquisition studies and in the subjects with a BMI of 30 or more. Also of interest--the greatest gain in performance was achieved at the lowest lesion contrast and the smallest gain in performance at the highest lesion contrast.

Nuclear medicine technologists and physicians may be able to take advantage of the gain achieved with TOF PET to reduce scanning time, therefore increasing patient comfort and minimizing patient motion. They may also be able to reduce the injected radiopharmaceutical dose, thereby reducing the exposure of patients and health professionals to radiation.

Related Links:

University of Pennsylvania





RTI ELECTRONICS AB
RADCAL
SuperSonic Imagine

Channels

MRI

view channel
Image: The quantitative character of the novel 3D technique on MR scans from a patient with primary liver cancer is demonstrated. Images A and B show the scan of the patient before being treated with chemoembolization. The new 3D technique helped quantify the volume and distribution of viable tumor tissue (shown in red and yellow colors). Images C and D demonstrate MR scans acquired after the treatment. The new 3D method helped the radiologists to quantify the vast central destruction of the tumor after the treatment (the dead tumor is represented by the blue color) (Photo courtesy of Johns Hopkins Medicine).

3D MRI Offers Improved Prediction of Survival After Chemotherapy for Liver Tumors

Researchers are using specialized three-dimensional (3D) magnetic resonance imaging (MRI) scanning technology to accurately measure living and dying liver tumor tissue in order to quickly show whether... Read more

Ultrasound

view channel
Image: Siemens Healthcare has launched the HELX Evolution, the newest iteration of its Acuson S range of ultrasound imaging systems (Photo courtesy of Siemens Healthcare).

Ultrasound Imaging System Enhancements Include High Definition Transducers, Sophisticated Elastography, and Tissue Strain Analysis

New features designed for a range of ultrasound systems include enhanced image quality with a large 21.5-inch liquid crystal diode (LCD) monitor, high definition (HD) transducers, optimized contrast agent... Read more

General/Advanced Imaging

view channel

Secondary Light Emission Generated by Plasmonic Nanostructures May Improve Medical Imaging Technology

New clues into light emission at different wavelengths generated by elements known plasmonic nanostructures may help to improve medical imaging technology. A plasmon is a quantum of plasma oscillation. The plasmon is a quasiparticle resulting from the quantization of plasma oscillations just as photons, and phonons are... Read more

Imaging IT

view channel

Software Designed for the Assessment of Orthopedic Implant Fixation and Bone Segment Motion

Model-based roentgen stereophotogrammetric analysis (MBRSA) software has been developed for evaluation of orthopedic implant fixation and bone segment motion. The software is the first to measure the in vivo three-dimensional (3D) position and/or relative motion of metal implants, markers beads, and/or bone segments in... Read more

Industry News

view channel

Collaboration Expands Capacity for Proton Therapy Clinical Research and Patient Treatments

Varian Medical Systems (Palo Alto, CA, USA) and the Paul Scherrer Institute (PSI; Villigen PSI, Switzerland) are extending an existing collaboration in the field of proton therapy to offer patients more accurate cancer treatments using intensity-modulated proton therapy (IMPT). Under the agreement, Varian will also... Read more
 
Copyright © 2000-2014 Globetech Media. All rights reserved.